Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

One-year follow-up of B vitamin and Iron status in patients with phenylketonuria provided tetrahydrobiopterin (BH4)

Authors: Kristen D Brantley, Teresa D Douglas, Rani H Singh

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

People with Phenylketonuria (PKU) who respond to tetrahydrobiopterin (BH4) often decrease dependence on medical food (MF) following increased phenylalanine (phe) tolerance. Responders to BH4 may experience a reduction in certain nutrients if not compensated through intact foods or supplements. This study investigated B6, B12, folate, and iron status based on blood levels and dietary intake in patients with PKU responsive to BH4 over 1 year.

Methods

Fifty-eight patients with PKU, ages 4–50 years were recruited and initiated on BH4 therapy. Patients were monitored for BH4 response, and nutritional status was recorded at regular intervals over 12 months. The analysis included 33 patients with known BH4 response status and complete nutritional data. Nutrient intake was determined by National Data System for Research (NDSR) analysis of self reported 3 day diet records and compared to Dietary Reference Intakes (DRIs). Blood biomarkers were analyzed by Quest Diagnostics and compared to laboratory reference ranges. Patient laboratory values were compared to controls from the National Health and Examination Survey (NHANES). Differences in nutrient intakes across time points were examined, stratified by age, using nonparametric methods. Statistical analyses were completed with SAS 9.4, with significance set at α = 0.05.

Results

Medical food intake declined among pediatric (p < 0.01) and adult (p = 0.06) BH4 responders over 1 year. Among those < 18 years of age, mean percent of calories obtained from MF declined from 21.3 to 4.7%. In adults, percent calories from MF dropped from 19.5 to 4.0%. Though maintaining laboratory and dietary values within reference ranges, responders < 18 years experienced a significant decline in serum B12 (p = 0.01), dietary folate (p = 0.006), and dietary iron (p = 0.004) over the study.

Conclusion

Although mean dietary and laboratory values for B12, B6, folate, and iron in BH4 responders and non-responders were adequate at baseline and 12-month follow-up, responders experienced a significant decline in serum B12 over 1 year, which may be explained by decreased intake of fortified MF. Both response groups had lower serum B12 than NHANES controls at baseline and 12 months. Results indicate a need to monitor B12 concentrations and consider micronutrient supplementation, with special attention to pediatric patients with PKU.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hood A, Grange DK, Christ SE, et al. Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Mol Genet Metab. 2014;111:445–51.CrossRef Hood A, Grange DK, Christ SE, et al. Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Mol Genet Metab. 2014;111:445–51.CrossRef
2.
go back to reference Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med. 2002;347:2122–32.CrossRef Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med. 2002;347:2122–32.CrossRef
3.
go back to reference Keil S, Anjema K, van Spronsen FJ, et al. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics. 2013;131:e1881–8.CrossRef Keil S, Anjema K, van Spronsen FJ, et al. Long-term follow-up and outcome of phenylketonuria patients on sapropterin: a retrospective study. Pediatrics. 2013;131:e1881–8.CrossRef
4.
go back to reference Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16:188–200.CrossRef Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16:188–200.CrossRef
7.
go back to reference Trefz FK, Muntau AC, Lagler FB, Moreau F, Alm J, Burlina A, Rutsch F, Bélanger-Quintana A, Feillet F, KAMPER investigators. The Kuvan(®) Adult Maternal Paediatric European Registry (KAMPER) Multinational Observational Study: Baseline and 1-Year Data in Phenylketonuria Patients Responsive to Sapropterin. JIMD Rep. 2015;23:35–43. https://doi.org/10.1007/8904_2015_425 Epub 2015 Mar 31. PubMed PMID: 25822821; PubMed Central PMCID: PMC4484899.CrossRefPubMedPubMedCentral Trefz FK, Muntau AC, Lagler FB, Moreau F, Alm J, Burlina A, Rutsch F, Bélanger-Quintana A, Feillet F, KAMPER investigators. The Kuvan(®) Adult Maternal Paediatric European Registry (KAMPER) Multinational Observational Study: Baseline and 1-Year Data in Phenylketonuria Patients Responsive to Sapropterin. JIMD Rep. 2015;23:35–43. https://​doi.​org/​10.​1007/​8904_​2015_​425 Epub 2015 Mar 31. PubMed PMID: 25822821; PubMed Central PMCID: PMC4484899.CrossRefPubMedPubMedCentral
8.
go back to reference Singh RH, Quirk ME, Douglas TD, Brauchla MC. BH(4) therapy impacts the nutrition status and intake in children with phenylketonuria: 2-year follow-up. J Inherit Metab Dis. 2010;33:689–95.CrossRef Singh RH, Quirk ME, Douglas TD, Brauchla MC. BH(4) therapy impacts the nutrition status and intake in children with phenylketonuria: 2-year follow-up. J Inherit Metab Dis. 2010;33:689–95.CrossRef
9.
go back to reference Singh RH, Quirk ME. Using change in plasma phenylalanine concentrations and ability to liberalize diet to classify responsiveness to tetrahydrobiopterin therapy in patients with phenylketonuria. Mol Genet Metab. 2011;104(4):485–491. doi: https://doi.org/10.1016/j.ymgme.2011.09.009. Epub 2011 Sep 16. PubMed PMID: 21986447; PubMed Central PMCID: PMC4029441.CrossRef Singh RH, Quirk ME. Using change in plasma phenylalanine concentrations and ability to liberalize diet to classify responsiveness to tetrahydrobiopterin therapy in patients with phenylketonuria. Mol Genet Metab. 2011;104(4):485–491. doi: https://​doi.​org/​10.​1016/​j.​ymgme.​2011.​09.​009. Epub 2011 Sep 16. PubMed PMID: 21986447; PubMed Central PMCID: PMC4029441.CrossRef
10.
go back to reference Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1999. Institute of Medicine. Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academy Press; 1999.
11.
go back to reference Thiele AG, Weigel JF, Ziesch B, et al. Nutritional changes and micronutrient supply in patients with phenylketonuria under therapy with tetrahydrobiopterin (BH(4)). JIMD Rep. 2013;9:31–40.CrossRef Thiele AG, Weigel JF, Ziesch B, et al. Nutritional changes and micronutrient supply in patients with phenylketonuria under therapy with tetrahydrobiopterin (BH(4)). JIMD Rep. 2013;9:31–40.CrossRef
12.
go back to reference Rohde C, von Teeffelen-Heithoff A, Thiele AG, et al. PKU patients on a relaxed diet may be at risk for micronutrient deficiencies. Eur J Clin Nutr. 2014;68:119–24.CrossRef Rohde C, von Teeffelen-Heithoff A, Thiele AG, et al. PKU patients on a relaxed diet may be at risk for micronutrient deficiencies. Eur J Clin Nutr. 2014;68:119–24.CrossRef
13.
go back to reference Crujeiras V, Aldamiz-Echevarria L, Dalmau J, et al. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol Genet Metab. 2015;115:145–50.CrossRef Crujeiras V, Aldamiz-Echevarria L, Dalmau J, et al. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol Genet Metab. 2015;115:145–50.CrossRef
14.
go back to reference Robinson M, White FJ, Cleary MA, et al. Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr. 2000;136:545–7.CrossRef Robinson M, White FJ, Cleary MA, et al. Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr. 2000;136:545–7.CrossRef
15.
go back to reference Hanley WB, Feigenbaum A, Clarke JT, et al. Vitamin B12 deficiency in adolescents and young adults with phenylketonuria. Lancet. 1993;342:997.CrossRef Hanley WB, Feigenbaum A, Clarke JT, et al. Vitamin B12 deficiency in adolescents and young adults with phenylketonuria. Lancet. 1993;342:997.CrossRef
16.
go back to reference Hvas AM, Nexo E, Nielsen JB. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis. 2006;29:47–53.CrossRef Hvas AM, Nexo E, Nielsen JB. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis. 2006;29:47–53.CrossRef
17.
go back to reference Lambruschini N, Perez-Duenas B, Vilaseca MA, et al. Clinical and nutritional evaluation of phenylketonuric patients on tetrahydrobiopterin monotherapy. Mol Genet Metab. 2005;86(Suppl 1):S54–60.CrossRef Lambruschini N, Perez-Duenas B, Vilaseca MA, et al. Clinical and nutritional evaluation of phenylketonuric patients on tetrahydrobiopterin monotherapy. Mol Genet Metab. 2005;86(Suppl 1):S54–60.CrossRef
18.
go back to reference Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105–31.CrossRef Koury MJ, Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr. 2004;24:105–31.CrossRef
19.
go back to reference Douglas TD, Jinnah HA, Bernhard D, Singh RH. The effects of sapropterin on urinary monoamine metabolites in phenylketonuria. Mol Genet Metab. 2013;109:243–50.CrossRef Douglas TD, Jinnah HA, Bernhard D, Singh RH. The effects of sapropterin on urinary monoamine metabolites in phenylketonuria. Mol Genet Metab. 2013;109:243–50.CrossRef
22.
go back to reference Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2005–2006. https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Laboratory&CycleBeginYear=2005 Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2005–2006. https://​wwwn.​cdc.​gov/​nchs/​nhanes/​search/​datapage.​aspx?​Component=​Laboratory&​CycleBeginYear=​2005
24.
go back to reference Walter JH. Vitamin B12 deficiency and phenylketonuria. Mol Genet Metab. 2011;104(Suppl):S52–4.CrossRef Walter JH. Vitamin B12 deficiency and phenylketonuria. Mol Genet Metab. 2011;104(Suppl):S52–4.CrossRef
25.
go back to reference MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis. 2010;33:665–70.CrossRef MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis. 2010;33:665–70.CrossRef
26.
go back to reference Fisch RO. Comments on diet and compliance in phenylketonuria. Eur J Pediatr. 2000;159(Suppl 2):S142–4.CrossRef Fisch RO. Comments on diet and compliance in phenylketonuria. Eur J Pediatr. 2000;159(Suppl 2):S142–4.CrossRef
Metadata
Title
One-year follow-up of B vitamin and Iron status in patients with phenylketonuria provided tetrahydrobiopterin (BH4)
Authors
Kristen D Brantley
Teresa D Douglas
Rani H Singh
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0923-2

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue