Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency

Authors: Amelie S. Lotz-Havla, Wulf Röschinger, Katharina Schiergens, Katharina Singer, Daniela Karall, Vassiliki Konstantopoulou, Saskia B. Wortmann, Esther M. Maier

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency are long-chain fatty acid oxidation disorders with particularly high morbidity and mortality. Outcome can be favorable if diagnosed in time, prompting the implementation in newborn screening programs. Sporadic cases missed by the initial screening sample have been reported. However, little is known on pitfalls during confirmatory testing resulting in fatal misconception of the diagnosis.

Results

We report a series of three patients with MTP and LCHAD deficiency, in whom diagnosis was missed by newborn screening, resulting in life-threatening metabolic decompensations within the first half year of life. Two of the patients showed elevated concentrations of primary markers C16-OH and C18:1-OH but were missed by confirmatory testing performed by the maternity clinic. A metabolic center was not consulted. Confirmatory testing consisted of analyses of acylcarnitines in blood and organic acids in urine, the finding of normal excretion of organic acids led to rejection and underestimation of the diagnosis, respectively. The third patient, a preterm infant, was not identified in the initial screening sample due to only moderate elevations of C16-OH and C18:1-OH and normal secondary markers and analyte ratios.

Conclusion

Our observations highlight limitations of newborn screening for MTP/LCHAD deficiency. They confirm that analyses of acylcarnitines in blood and organic acids in urine alone are not suitable for confirmatory testing and molecular or functional analysis is crucial in diagnosing MTP/LCHAD deficiency. Mild elevations of primary biomarkers in premature infants need to trigger confirmatory testing. Our report underscores the essential role of specialized centers in confirming or ruling out diagnoses in suspicious screening results.
Literature
1.
go back to reference Wanders RJ, L IJ, Poggi F, Bonnefont JP, Munnich A, Brivet M, Rabier D, Saudubray JM. Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun. 1992;188:1139–45.CrossRefPubMed Wanders RJ, L IJ, Poggi F, Bonnefont JP, Munnich A, Brivet M, Rabier D, Saudubray JM. Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun. 1992;188:1139–45.CrossRefPubMed
2.
go back to reference Wanders RJ, Duran M, Ijlst L, de Jager JP, van Gennip AH, Jakobs C, Dorland L, van Sprang FJ. Sudden infant death and long-chain 3-hydroxyacyl-CoA dehydrogenase. Lancet. 1989;2:52–3.CrossRefPubMed Wanders RJ, Duran M, Ijlst L, de Jager JP, van Gennip AH, Jakobs C, Dorland L, van Sprang FJ. Sudden infant death and long-chain 3-hydroxyacyl-CoA dehydrogenase. Lancet. 1989;2:52–3.CrossRefPubMed
4.
go back to reference Ushikubo S, Aoyama T, Kamijo T, Wanders RJ, Rinaldo P, Vockley J, Hashimoto T. Molecular characterization of mitochondrial trifunctional protein deficiency: formation of the enzyme complex is important for stabilization of both alpha- and beta-subunits. Am J Hum Genet. 1996;58:979–88.PubMedPubMedCentral Ushikubo S, Aoyama T, Kamijo T, Wanders RJ, Rinaldo P, Vockley J, Hashimoto T. Molecular characterization of mitochondrial trifunctional protein deficiency: formation of the enzyme complex is important for stabilization of both alpha- and beta-subunits. Am J Hum Genet. 1996;58:979–88.PubMedPubMedCentral
5.
go back to reference Weinberger MJ, Rinaldo P, Strauss AW, Bennett MJ. Intact alpha-subunit is required for membrane-binding of human mitochondrial trifunctional beta-oxidation protein, but is not necessary for conferring 3-ketoacyl-CoA thiolase activity to the beta-subunit. Biochem Biophys Res Commun. 1995;209:47–52.CrossRefPubMed Weinberger MJ, Rinaldo P, Strauss AW, Bennett MJ. Intact alpha-subunit is required for membrane-binding of human mitochondrial trifunctional beta-oxidation protein, but is not necessary for conferring 3-ketoacyl-CoA thiolase activity to the beta-subunit. Biochem Biophys Res Commun. 1995;209:47–52.CrossRefPubMed
6.
go back to reference Jackson S, Kler RS, Bartlett K, Briggs H, Bindoff LA, Pourfarzam M, Gardner-Medwin D, Turnbull DM. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992;90:1219–25.CrossRefPubMedPubMedCentral Jackson S, Kler RS, Bartlett K, Briggs H, Bindoff LA, Pourfarzam M, Gardner-Medwin D, Turnbull DM. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992;90:1219–25.CrossRefPubMedPubMedCentral
7.
go back to reference Spiekerkoetter U, Khuchua Z, Yue Z, Bennett MJ, Strauss AW. General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res. 2004;55:190–6.CrossRefPubMed Spiekerkoetter U, Khuchua Z, Yue Z, Bennett MJ, Strauss AW. General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Pediatr Res. 2004;55:190–6.CrossRefPubMed
8.
go back to reference den Boer ME, Ijlst L, Wijburg FA, Oostheim W, van Werkhoven MA, van Pampus MG, Heymans HS, Wanders RJ. Heterozygosity for the common LCHAD mutation (1528g>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr Res. 2000;48:151–4.CrossRefPubMed den Boer ME, Ijlst L, Wijburg FA, Oostheim W, van Werkhoven MA, van Pampus MG, Heymans HS, Wanders RJ. Heterozygosity for the common LCHAD mutation (1528g>C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr Res. 2000;48:151–4.CrossRefPubMed
9.
go back to reference Karall D, Brunner-Krainz M, Kogelnig K, Konstantopoulou V, Maier EM, Moslinger D, Plecko B, Sperl W, Volkmar B, Scholl-Burgi S. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with long-chain 3-Hydroxy acyl CoA dehydrogenase deficiency (LCHADD). Orphanet J Rare Dis. 2015;10:21.CrossRefPubMedPubMedCentral Karall D, Brunner-Krainz M, Kogelnig K, Konstantopoulou V, Maier EM, Moslinger D, Plecko B, Sperl W, Volkmar B, Scholl-Burgi S. Clinical outcome, biochemical and therapeutic follow-up in 14 Austrian patients with long-chain 3-Hydroxy acyl CoA dehydrogenase deficiency (LCHADD). Orphanet J Rare Dis. 2015;10:21.CrossRefPubMedPubMedCentral
10.
go back to reference Sykut-Cegielska J, Gradowska W, Piekutowska-Abramczuk D, Andresen BS, Olsen RK, Oltarzewski M, Pronicki M, Pajdowska M, Bogdanska A, Jablonska E, et al. Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J Inherit Metab Dis. 2011;34:185–95.CrossRefPubMed Sykut-Cegielska J, Gradowska W, Piekutowska-Abramczuk D, Andresen BS, Olsen RK, Oltarzewski M, Pronicki M, Pajdowska M, Bogdanska A, Jablonska E, et al. Urgent metabolic service improves survival in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency detected by symptomatic identification and pilot newborn screening. J Inherit Metab Dis. 2011;34:185–95.CrossRefPubMed
11.
go back to reference Gillingham M, Van Calcar S, Ney D, Wolff J, Harding C. Dietary management of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). A case report and survey. J Inherit Metab Dis. 1999;22:123–31.CrossRefPubMedPubMedCentral Gillingham M, Van Calcar S, Ney D, Wolff J, Harding C. Dietary management of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). A case report and survey. J Inherit Metab Dis. 1999;22:123–31.CrossRefPubMedPubMedCentral
12.
go back to reference Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009; 32:498–505. Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, Das A, Haase C, Hennermann JB, Karall D, et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009; 32:498–505.
13.
go back to reference Karall D, Mair G, Albrecht U, Niedermayr K, Karall T, Schobersberger W, Scholl-Burgi S. Sports in LCHAD deficiency: maximal incremental and endurance exercise tests in a 13-year-old patient with long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency (LCHADD) and Heptanoate treatment. JIMD Rep. 2014;17:7–12.CrossRefPubMedPubMedCentral Karall D, Mair G, Albrecht U, Niedermayr K, Karall T, Schobersberger W, Scholl-Burgi S. Sports in LCHAD deficiency: maximal incremental and endurance exercise tests in a 13-year-old patient with long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency (LCHADD) and Heptanoate treatment. JIMD Rep. 2014;17:7–12.CrossRefPubMedPubMedCentral
14.
go back to reference De Biase I, Viau KS, Liu A, Yuzyuk T, Botto LD, Pasquali M, Longo N. Diagnosis, treatment, and clinical outcome of patients with mitochondrial trifunctional protein/long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency. JIMD Rep. 2017;31:63–71.CrossRefPubMed De Biase I, Viau KS, Liu A, Yuzyuk T, Botto LD, Pasquali M, Longo N. Diagnosis, treatment, and clinical outcome of patients with mitochondrial trifunctional protein/long-chain 3-Hydroxy acyl-CoA dehydrogenase deficiency. JIMD Rep. 2017;31:63–71.CrossRefPubMed
15.
go back to reference Jones PM, Bennett MJ. The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta. 2002;324:121–8.CrossRefPubMed Jones PM, Bennett MJ. The changing face of newborn screening: diagnosis of inborn errors of metabolism by tandem mass spectrometry. Clin Chim Acta. 2002;324:121–8.CrossRefPubMed
16.
go back to reference American College of Medical Genetics Newborn Screening Act Sheets and Confirmatory Algorithms 2009. American College of Medical Genetics Newborn Screening Act Sheets and Confirmatory Algorithms 2009.
17.
go back to reference Sweetman L, Millington DS, Therrell BL, Hannon WH, Popovich B, Watson MS, Mann MY, Lloyd-Puryear MA, van Dyck PC. Naming and counting disorders (conditions) included in newborn screening panels. Pediatrics. 2006;117:S308–14.CrossRefPubMed Sweetman L, Millington DS, Therrell BL, Hannon WH, Popovich B, Watson MS, Mann MY, Lloyd-Puryear MA, van Dyck PC. Naming and counting disorders (conditions) included in newborn screening panels. Pediatrics. 2006;117:S308–14.CrossRefPubMed
18.
go back to reference Sander J, Sander S, Steuerwald U, Janzen N, Peter M, Wanders RJ, Marquardt I, Korenke GC, Das AM. Neonatal screening for defects of the mitochondrial trifunctional protein. Mol Genet Metab. 2005;85:108–14.CrossRefPubMed Sander J, Sander S, Steuerwald U, Janzen N, Peter M, Wanders RJ, Marquardt I, Korenke GC, Das AM. Neonatal screening for defects of the mitochondrial trifunctional protein. Mol Genet Metab. 2005;85:108–14.CrossRefPubMed
19.
go back to reference Kasper DC, Ratschmann R, Metz TF, Mechtler TP, Moslinger D, Konstantopoulou V, Item CB, Pollak A, Herkner KR. The national Austrian newborn screening program - eight years experience with mass spectrometry. Past, present, and future goals. Wien Klin Wochenschr. 2010;122:607–13.CrossRefPubMed Kasper DC, Ratschmann R, Metz TF, Mechtler TP, Moslinger D, Konstantopoulou V, Item CB, Pollak A, Herkner KR. The national Austrian newborn screening program - eight years experience with mass spectrometry. Past, present, and future goals. Wien Klin Wochenschr. 2010;122:607–13.CrossRefPubMed
20.
go back to reference Spiekerkoetter U, Haussmann U, Mueller M, ter Veld F, Stehn M, Santer R, Lukacs Z. Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr. 2010;157:668–73.CrossRefPubMed Spiekerkoetter U, Haussmann U, Mueller M, ter Veld F, Stehn M, Santer R, Lukacs Z. Tandem mass spectrometry screening for very long-chain acyl-CoA dehydrogenase deficiency: the value of second-tier enzyme testing. J Pediatr. 2010;157:668–73.CrossRefPubMed
21.
go back to reference Spiekerkoetter U, Mueller M, Sturm M, Hofmann M, Schneider DT. Lethal undiagnosed very long-chain acyl-CoA dehydrogenase deficiency with mild C14-Acylcarnitine abnormalities on newborn screening. JIMD Rep. 2012;6:113–5.CrossRefPubMedPubMedCentral Spiekerkoetter U, Mueller M, Sturm M, Hofmann M, Schneider DT. Lethal undiagnosed very long-chain acyl-CoA dehydrogenase deficiency with mild C14-Acylcarnitine abnormalities on newborn screening. JIMD Rep. 2012;6:113–5.CrossRefPubMedPubMedCentral
22.
go back to reference Schymik I, Liebig M, Mueller M, Wendel U, Mayatepek E, Strauss AW, Wanders RJ, Spiekerkoetter U. Pitfalls of neonatal screening for very-long-chain acyl-CoA dehydrogenase deficiency using tandem mass spectrometry. J Pediatr. 2006;149:128–30.CrossRefPubMed Schymik I, Liebig M, Mueller M, Wendel U, Mayatepek E, Strauss AW, Wanders RJ, Spiekerkoetter U. Pitfalls of neonatal screening for very-long-chain acyl-CoA dehydrogenase deficiency using tandem mass spectrometry. J Pediatr. 2006;149:128–30.CrossRefPubMed
23.
go back to reference Ficicioglu C, Coughlin CR 2nd, Bennett MJ, Yudkoff M. Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J Pediatr. 2010;156:492–4.CrossRefPubMed Ficicioglu C, Coughlin CR 2nd, Bennett MJ, Yudkoff M. Very long-chain acyl-CoA dehydrogenase deficiency in a patient with normal newborn screening by tandem mass spectrometry. J Pediatr. 2010;156:492–4.CrossRefPubMed
24.
go back to reference Sahai I, Bailey JC, Eaton RB, Zytkovicz T, Harris DJ. A near-miss: very long chain acyl-CoA dehydrogenase deficiency with normal primary markers in the initial well-timed newborn screening specimen. J Pediatr. 2011;158:172. author reply 172-173CrossRefPubMed Sahai I, Bailey JC, Eaton RB, Zytkovicz T, Harris DJ. A near-miss: very long chain acyl-CoA dehydrogenase deficiency with normal primary markers in the initial well-timed newborn screening specimen. J Pediatr. 2011;158:172. author reply 172-173CrossRefPubMed
25.
go back to reference Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis. 2014;37:881–7.CrossRefPubMed Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis. 2014;37:881–7.CrossRefPubMed
26.
go back to reference Feuchtbaum L, Lorey F, Faulkner L, Sherwin J, Currier R, Bhandal A, Cunningham G. California's experience implementing a pilot newborn supplemental screening program using tandem mass spectrometry. Pediatrics. 2006;117:S261–9.CrossRefPubMed Feuchtbaum L, Lorey F, Faulkner L, Sherwin J, Currier R, Bhandal A, Cunningham G. California's experience implementing a pilot newborn supplemental screening program using tandem mass spectrometry. Pediatrics. 2006;117:S261–9.CrossRefPubMed
27.
go back to reference Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49:1797–817.CrossRefPubMed Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49:1797–817.CrossRefPubMed
28.
29.
go back to reference Jones PM, Bennett MJ. Urine organic acid analysis for inherited metabolic disease using gas chromatography-mass spectrometry. Methods Mol Biol. 2010;603:423–31.CrossRefPubMed Jones PM, Bennett MJ. Urine organic acid analysis for inherited metabolic disease using gas chromatography-mass spectrometry. Methods Mol Biol. 2010;603:423–31.CrossRefPubMed
30.
go back to reference Venizelos N, Ijlst L, Wanders RJ. Hagenfeldt L. beta-oxidation enzymes in fibroblasts from patients with 3-hydroxydicarboxylic aciduria. Pediatr Res. 1994;36:111–4.CrossRefPubMed Venizelos N, Ijlst L, Wanders RJ. Hagenfeldt L. beta-oxidation enzymes in fibroblasts from patients with 3-hydroxydicarboxylic aciduria. Pediatr Res. 1994;36:111–4.CrossRefPubMed
31.
go back to reference Wanders RJ, L IJ, van Gennip AH, Jakobs C, de Jager JP, Dorland L, van Sprang FJ, Duran M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 1990;13:311–4.CrossRefPubMed Wanders RJ, L IJ, van Gennip AH, Jakobs C, de Jager JP, Dorland L, van Sprang FJ, Duran M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 1990;13:311–4.CrossRefPubMed
32.
go back to reference Jlst L, Ruiter JP, Hoovers JM, Jakobs ME, Wanders RJ. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest. 1996;98:1028–33.CrossRef Jlst L, Ruiter JP, Hoovers JM, Jakobs ME, Wanders RJ. Common missense mutation G1528C in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Characterization and expression of the mutant protein, mutation analysis on genomic DNA and chromosomal localization of the mitochondrial trifunctional protein alpha subunit gene. J Clin Invest. 1996;98:1028–33.CrossRef
33.
go back to reference Tyni T, Palotie A, Viinikka L, Valanne L, Salo MK, von Dobeln U, Jackson S, Wanders R, Venizelos N, Pihko H. Long-chain 3-hydroxyacyl-coenzyme a dehydrogenase deficiency with the G1528C mutation: clinical presentation of thirteen patients. J Pediatr. 1997;130:67–76.CrossRefPubMed Tyni T, Palotie A, Viinikka L, Valanne L, Salo MK, von Dobeln U, Jackson S, Wanders R, Venizelos N, Pihko H. Long-chain 3-hydroxyacyl-coenzyme a dehydrogenase deficiency with the G1528C mutation: clinical presentation of thirteen patients. J Pediatr. 1997;130:67–76.CrossRefPubMed
34.
go back to reference Tyni T, Rapola J, Paetau A, Palotie A, Pihko H. Pathology of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation. Pediatr Pathol Lab Med. 1997;17:427–47.CrossRefPubMed Tyni T, Rapola J, Paetau A, Palotie A, Pihko H. Pathology of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation. Pediatr Pathol Lab Med. 1997;17:427–47.CrossRefPubMed
35.
go back to reference Purevsuren J, Fukao T, Hasegawa Y, Fukuda S, Kobayashi H, Yamaguchi S. Study of deep intronic sequence exonization in a Japanese neonate with a mitochondrial trifunctional protein deficiency. Mol Genet Metab. 2008;95:46–51.CrossRefPubMed Purevsuren J, Fukao T, Hasegawa Y, Fukuda S, Kobayashi H, Yamaguchi S. Study of deep intronic sequence exonization in a Japanese neonate with a mitochondrial trifunctional protein deficiency. Mol Genet Metab. 2008;95:46–51.CrossRefPubMed
36.
go back to reference Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet. 2010;127:135–54.CrossRefPubMed Vorechovsky I. Transposable elements in disease-associated cryptic exons. Hum Genet. 2010;127:135–54.CrossRefPubMed
37.
go back to reference Couce ML, Lopez-Suarez O, Boveda MD, Castineiras DE, Cocho JA, Garcia-Villoria J, Castro-Gago M, Fraga JM, Ribes A. Glutaric aciduria type I: outcome of patients with early- versus late-diagnosis. Eur J Paediatr Neurol. 2013;17:383–9.CrossRefPubMed Couce ML, Lopez-Suarez O, Boveda MD, Castineiras DE, Cocho JA, Garcia-Villoria J, Castro-Gago M, Fraga JM, Ribes A. Glutaric aciduria type I: outcome of patients with early- versus late-diagnosis. Eur J Paediatr Neurol. 2013;17:383–9.CrossRefPubMed
38.
go back to reference Dietzen DJ, Rinaldo P, Whitley RJ, Rhead WJ, Hannon WH, Garg UC, Lo SF, Bennett MJ. National academy of clinical biochemistry laboratory medicine practice guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry; executive summary. Clin Chem. 2009;55:1615–26.CrossRefPubMed Dietzen DJ, Rinaldo P, Whitley RJ, Rhead WJ, Hannon WH, Garg UC, Lo SF, Bennett MJ. National academy of clinical biochemistry laboratory medicine practice guidelines: follow-up testing for metabolic disease identified by expanded newborn screening using tandem mass spectrometry; executive summary. Clin Chem. 2009;55:1615–26.CrossRefPubMed
39.
go back to reference Clinical and Laboratory Standards Institute. Newborn screening for preterm, low birth weight, and sick newborns; approved guideline. In: CLSI document NBS03-A; 2009. Clinical and Laboratory Standards Institute. Newborn screening for preterm, low birth weight, and sick newborns; approved guideline. In: CLSI document NBS03-A; 2009.
40.
go back to reference Mandour I, El Gayar D, Amin M, Farid TM, Ali AA. Amino acid and acylcarnitine profiles in premature neonates: a pilot study. Indian J Pediatr. 2013;80:736–44.CrossRefPubMed Mandour I, El Gayar D, Amin M, Farid TM, Ali AA. Amino acid and acylcarnitine profiles in premature neonates: a pilot study. Indian J Pediatr. 2013;80:736–44.CrossRefPubMed
41.
go back to reference Meyburg J, Schulze A, Kohlmueller D, Linderkamp O, Mayatepek E. Postnatal changes in neonatal acylcarnitine profile. Pediatr Res. 2001;49:125–9.CrossRefPubMed Meyburg J, Schulze A, Kohlmueller D, Linderkamp O, Mayatepek E. Postnatal changes in neonatal acylcarnitine profile. Pediatr Res. 2001;49:125–9.CrossRefPubMed
42.
go back to reference Gucciardi A, Zaramella P, Costa I, Pirillo P, Nardo D, Naturale M, Chiandetti L, Giordano G. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatr Res. 2015;77:36–47.CrossRefPubMed Gucciardi A, Zaramella P, Costa I, Pirillo P, Nardo D, Naturale M, Chiandetti L, Giordano G. Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatr Res. 2015;77:36–47.CrossRefPubMed
43.
go back to reference Treem WR, Rinaldo P, Hale DE, Stanley CA, Millington DS, Hyams JS, Jackson S, Turnbull DM. Acute fatty liver of pregnancy and long-chain 3-hydroxyacyl-coenzyme a dehydrogenase deficiency. Hepatology. 1994;19:339–45.PubMed Treem WR, Rinaldo P, Hale DE, Stanley CA, Millington DS, Hyams JS, Jackson S, Turnbull DM. Acute fatty liver of pregnancy and long-chain 3-hydroxyacyl-coenzyme a dehydrogenase deficiency. Hepatology. 1994;19:339–45.PubMed
44.
go back to reference Strauss AW, Bennett MJ, Rinaldo P, Sims HF, O'Brien LK, Zhao Y, Gibson B, Ibdah J. Inherited long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and a fetal-maternal interaction cause maternal liver disease and other pregnancy complications. Semin Perinatol. 1999;23:100–12.CrossRefPubMed Strauss AW, Bennett MJ, Rinaldo P, Sims HF, O'Brien LK, Zhao Y, Gibson B, Ibdah J. Inherited long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and a fetal-maternal interaction cause maternal liver disease and other pregnancy complications. Semin Perinatol. 1999;23:100–12.CrossRefPubMed
45.
go back to reference Shekhawat P, Bennett MJ, Sadovsky Y, Nelson DM, Rakheja D, Strauss AW. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am J Physiol Endocrinol Metab. 2003;284:E1098–105.CrossRefPubMed Shekhawat P, Bennett MJ, Sadovsky Y, Nelson DM, Rakheja D, Strauss AW. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases. Am J Physiol Endocrinol Metab. 2003;284:E1098–105.CrossRefPubMed
46.
go back to reference Waisbren SE, Albers S, Amato S, Ampola M, Brewster TG, Demmer L, Eaton RB, Greenstein R, Korson M, Larson C, et al. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA. 2003;290:2564–72.CrossRefPubMed Waisbren SE, Albers S, Amato S, Ampola M, Brewster TG, Demmer L, Eaton RB, Greenstein R, Korson M, Larson C, et al. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA. 2003;290:2564–72.CrossRefPubMed
47.
go back to reference Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007). J Inherit Metab Dis. 2007;30:585–92.CrossRefPubMed Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004-2007). J Inherit Metab Dis. 2007;30:585–92.CrossRefPubMed
Metadata
Title
Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency
Authors
Amelie S. Lotz-Havla
Wulf Röschinger
Katharina Schiergens
Katharina Singer
Daniela Karall
Vassiliki Konstantopoulou
Saskia B. Wortmann
Esther M. Maier
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0875-6

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue