Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

Improving the diagnosis of cobalamin and related defects by genomic analysis, plus functional and structural assessment of novel variants

Authors: Sandra Brasil, Fátima Leal, Ana Vega, Rosa Navarrete, María Jesús Ecay, Lourdes R. Desviat, Casandra Riera, Natàlia Padilla, Xavier de la Cruz, Mari Luz Couce, Elena Martin-Hernández, Ana Morais, Consuelo Pedrón, Luis Peña-Quintana, Miriam Rigoldi, Norma Specola, Isabel Tavares de Almeida, Inmaculada Vives, Raquel Yahyaoui, Pilar Rodríguez-Pombo, Magdalena Ugarte, Celia Pérez-Cerda, Begoña Merinero, Belén Pérez

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Cellular cobalamin defects are a locus and allelic heterogeneous disorder. The gold standard for coming to genetic diagnoses of cobalamin defects has for some time been gene-by-gene Sanger sequencing of individual DNA fragments. Enzymatic and cellular methods are employed before such sequencing to help in the selection of the gene defects to be sought, but this is time-consuming and laborious. Furthermore some cases remain undiagnosed because no biochemical methods have been available to test for cobalamin absorption and transport defects.

Results

This paper reports the use of massive parallel sequencing of DNA (exome analysis) for the accurate and rapid genetic diagnosis of cobalamin-related defects in a cohort of affected patients. The method was first validated in an initial cohort with different cobalamin defects. Mendelian segregation, the frequency of mutations, and the comprehensive structural and functional analysis of gene variants, identified disease-causing mutations in 12 genes involved in the absorption and synthesis of active cofactors of vitamin B12 (22 cases), and in the non-cobalamin metabolism-related genes ACSF3 (in four biochemically misdiagnosed patients) and SUCLA2 (in one patient with an unusual presentation). We have identified thirteen new variants all classified as pathogenic according to the ACGM recommendation but four were classified as variant likely pathogenic in MUT and SUCLA2. Functional and structural analysis provided evidences to classify them as pathogenic variants.

Conclusions

The present findings suggest that the technology used is sufficiently sensitive and specific, and the results it provides sufficiently reproducible, to recommend its use as a second-tier test after the biochemical detection of cobalamin disorder markers in the first days of life. However, for accurate diagnoses to be made, biochemical and functional tests that allow comprehensive clinical phenotyping are also needed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baumgartner MR, Fowler B. Vitamin B12 Disorders. In: Nenad Blau MD, Michael Gibson K, Dionisi-Vici C, editors. Physicians’s guide to the diagnosis, treatment and follow-up of inherited metabolic diseases; 2014. p. 205–17. Baumgartner MR, Fowler B. Vitamin B12 Disorders. In: Nenad Blau MD, Michael Gibson K, Dionisi-Vici C, editors. Physicians’s guide to the diagnosis, treatment and follow-up of inherited metabolic diseases; 2014. p. 205–17.
2.
go back to reference Banerjee R. B12 trafficking in mammals: a for coenzyme escort service. ACS Chem Biol. 2006;1:149–59.CrossRefPubMed Banerjee R. B12 trafficking in mammals: a for coenzyme escort service. ACS Chem Biol. 2006;1:149–59.CrossRefPubMed
3.
go back to reference Carmel R, Parker J, Kelman Z. Genomic mutations associated with mild and severe deficiencies of transcobalamin I (haptocorrin) that cause mildly and severely low serum cobalamin levels. Br J Haematol. 2009;147:386–91.CrossRefPubMed Carmel R, Parker J, Kelman Z. Genomic mutations associated with mild and severe deficiencies of transcobalamin I (haptocorrin) that cause mildly and severely low serum cobalamin levels. Br J Haematol. 2009;147:386–91.CrossRefPubMed
4.
go back to reference Carmel R, Green R, Rosenblatt DS, Watkins D. Update on cobalamin, folate, and homocysteine. Hematology Am Soc Hematol Educ Program. 2003;62–81. Carmel R, Green R, Rosenblatt DS, Watkins D. Update on cobalamin, folate, and homocysteine. Hematology Am Soc Hematol Educ Program. 2003;62–81.
5.
go back to reference Banerjee R, Gherasim C, Padovani D. The tinker, tailor, soldier in intracellular B12 trafficking. Curr Opin Chem Biol. 2009;13:477–84.CrossRef Banerjee R, Gherasim C, Padovani D. The tinker, tailor, soldier in intracellular B12 trafficking. Curr Opin Chem Biol. 2009;13:477–84.CrossRef
6.
go back to reference Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35:665–70.CrossRefPubMed Watkins D, Rosenblatt DS. Update and new concepts in vitamin responsive disorders of folate transport and metabolism. J Inherit Metab Dis. 2012;35:665–70.CrossRefPubMed
7.
go back to reference Quadros EV, Lai SC, Nakayama Y, Sequeira JM, Hannibal L, et al. Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B(12). Hum Mutat. 2010;31:924–9.CrossRefPubMedPubMedCentral Quadros EV, Lai SC, Nakayama Y, Sequeira JM, Hannibal L, et al. Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B(12). Hum Mutat. 2010;31:924–9.CrossRefPubMedPubMedCentral
8.
go back to reference Rutsch F, Gailus S, Suormala T, Fowler B. LMBRD1: the gene for the cblF defect of vitamin B(1)(2) metabolism. J Inherit Metab Dis. 2011;34:121–6.CrossRefPubMed Rutsch F, Gailus S, Suormala T, Fowler B. LMBRD1: the gene for the cblF defect of vitamin B(1)(2) metabolism. J Inherit Metab Dis. 2011;34:121–6.CrossRefPubMed
9.
go back to reference Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44:1152–5.CrossRefPubMed Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44:1152–5.CrossRefPubMed
10.
go back to reference Lerner-Ellis JP, Tirone JC, Pawelek PD, Dore C, Atkinson JL, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38:93–100.CrossRefPubMed Lerner-Ellis JP, Tirone JC, Pawelek PD, Dore C, Atkinson JL, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38:93–100.CrossRefPubMed
11.
go back to reference Yu HC, Sloan JL, Scharer G, Brebner A, Quintana AM, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet. 2013;93:506–14.CrossRefPubMedPubMedCentral Yu HC, Sloan JL, Scharer G, Brebner A, Quintana AM, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Am J Hum Genet. 2013;93:506–14.CrossRefPubMedPubMedCentral
12.
go back to reference Pupavac M, Watkins D, Petrella F, Fahiminiya S, Janer A, et al. (2016) Inborn error of Cobalamin metabolism associated with the intracellular accumulation of Transcobalamin-bound Cobalamin and mutations in ZNF143, which codes for a transcriptional activator. Hum Mutat. 2016;37(9):976–82. Pupavac M, Watkins D, Petrella F, Fahiminiya S, Janer A, et al. (2016) Inborn error of Cobalamin metabolism associated with the intracellular accumulation of Transcobalamin-bound Cobalamin and mutations in ZNF143, which codes for a transcriptional activator. Hum Mutat. 2016;37(9):976–82.
13.
go back to reference Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, et al. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet. 2017;26:2838–49.CrossRefPubMedPubMedCentral Quintana AM, Yu HC, Brebner A, Pupavac M, Geiger EA, et al. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet. 2017;26:2838–49.CrossRefPubMedPubMedCentral
14.
go back to reference Gueant JL, Chery C, Oussalah A, Nadaf J, Coelho D, et al. A PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun. 2018;9:67.CrossRefPubMedPubMedCentral Gueant JL, Chery C, Oussalah A, Nadaf J, Coelho D, et al. A PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun. 2018;9:67.CrossRefPubMedPubMedCentral
15.
go back to reference Stucki M, Coelho D, Suormala T, Burda P, Fowler B, et al. Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism. Hum Mol Genet. 2012;21:1410–8.CrossRefPubMed Stucki M, Coelho D, Suormala T, Burda P, Fowler B, et al. Molecular mechanisms leading to three different phenotypes in the cblD defect of intracellular cobalamin metabolism. Hum Mol Genet. 2012;21:1410–8.CrossRefPubMed
16.
go back to reference Dobson CM, Wai T, Leclerc D, Kadir H, Narang M, et al. Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet. 2002;11:3361–9.CrossRefPubMed Dobson CM, Wai T, Leclerc D, Kadir H, Narang M, et al. Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria. Hum Mol Genet. 2002;11:3361–9.CrossRefPubMed
17.
go back to reference Froese DS, Kochan G, Muniz JR, Wu X, Gileadi C, et al. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J Biol Chem. 2010;285:38204–13.CrossRefPubMedPubMedCentral Froese DS, Kochan G, Muniz JR, Wu X, Gileadi C, et al. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J Biol Chem. 2010;285:38204–13.CrossRefPubMedPubMedCentral
18.
go back to reference Maas RR, Marina AD, de Brouwer AP, Wevers RA, Rodenburg RJ, et al. SUCLA2 deficiency: a deafness-dystonia syndrome with distinctive metabolic findings (report of a new patient and review of the literature). JIMD Rep. 2016;27:27–32.CrossRefPubMed Maas RR, Marina AD, de Brouwer AP, Wevers RA, Rodenburg RJ, et al. SUCLA2 deficiency: a deafness-dystonia syndrome with distinctive metabolic findings (report of a new patient and review of the literature). JIMD Rep. 2016;27:27–32.CrossRefPubMed
19.
go back to reference Pupavac M, Tian X, Chu J, Wang G, Feng Y, et al. Added value of next generation gene panel analysis for patients with elevated methylmalonic acid and no clinical diagnosis following functional studies of vitamin B12 metabolism. Mol Genet Metab. 2016;117:363–8.CrossRefPubMed Pupavac M, Tian X, Chu J, Wang G, Feng Y, et al. Added value of next generation gene panel analysis for patients with elevated methylmalonic acid and no clinical diagnosis following functional studies of vitamin B12 metabolism. Mol Genet Metab. 2016;117:363–8.CrossRefPubMed
20.
go back to reference Sloan JL, Johnston JJ, Manoli I, Chandler RJ, Krause C, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet. 2011;43:883–6.CrossRefPubMedPubMedCentral Sloan JL, Johnston JJ, Manoli I, Chandler RJ, Krause C, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nat Genet. 2011;43:883–6.CrossRefPubMedPubMedCentral
21.
go back to reference Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.CrossRefPubMed Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.CrossRefPubMed
22.
go back to reference Malvagia S, Haynes CA, Grisotto L, Ombrone D, Funghini S, et al. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias. Clin Chim Acta. 2015;450:342–8.CrossRefPubMedPubMedCentral Malvagia S, Haynes CA, Grisotto L, Ombrone D, Funghini S, et al. Heptadecanoylcarnitine (C17) a novel candidate biomarker for newborn screening of propionic and methylmalonic acidemias. Clin Chim Acta. 2015;450:342–8.CrossRefPubMedPubMedCentral
23.
go back to reference Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.CrossRefPubMed Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42:30–5.CrossRefPubMed
24.
go back to reference Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.CrossRefPubMed Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.CrossRefPubMed
25.
go back to reference Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRefPubMedPubMedCentral Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRefPubMedPubMedCentral
26.
go back to reference Vega AI, Medrano C, Navarrete R, Desviat LR, Merinero B, et al. Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing. Genet Med. 2016;18:1037–43.CrossRefPubMed Vega AI, Medrano C, Navarrete R, Desviat LR, Merinero B, et al. Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing. Genet Med. 2016;18:1037–43.CrossRefPubMed
27.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
28.
go back to reference Kleinberger J, Maloney KA, Pollin TI, Jeng LJ. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genet Med. 2016;18:1165.CrossRefPubMedPubMedCentral Kleinberger J, Maloney KA, Pollin TI, Jeng LJ. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genet Med. 2016;18:1165.CrossRefPubMedPubMedCentral
29.
go back to reference Forny P, Schnellmann AS, Buerer C, Lutz S, Fowler B, et al. Molecular genetic characterization of 151 Mut-type Methylmalonic Aciduria patients and identification of 41 novel mutations in MUT. Hum Mutat. 2016;37:745–54.CrossRefPubMed Forny P, Schnellmann AS, Buerer C, Lutz S, Fowler B, et al. Molecular genetic characterization of 151 Mut-type Methylmalonic Aciduria patients and identification of 41 novel mutations in MUT. Hum Mutat. 2016;37:745–54.CrossRefPubMed
30.
go back to reference Perez B, Rincon A, Jorge-Finnigan A, Richard E, Merinero B, et al. Pseudoexon exclusion by antisense therapy in methylmalonic aciduria (MMAuria). Hum Mutat. 2009;30:1676–82.CrossRefPubMed Perez B, Rincon A, Jorge-Finnigan A, Richard E, Merinero B, et al. Pseudoexon exclusion by antisense therapy in methylmalonic aciduria (MMAuria). Hum Mutat. 2009;30:1676–82.CrossRefPubMed
31.
go back to reference Brasil S, Richard E, Jorge-Finnigan A, Leal F, Merinero B, et al. Methylmalonic aciduria cblB type: characterization of two novel mutations and mitochondrial dysfunction studies. Clin Genet. 2015;87:576–81.CrossRefPubMed Brasil S, Richard E, Jorge-Finnigan A, Leal F, Merinero B, et al. Methylmalonic aciduria cblB type: characterization of two novel mutations and mitochondrial dysfunction studies. Clin Genet. 2015;87:576–81.CrossRefPubMed
32.
go back to reference Fraser ME, Hayakawa K, Hume MS, Ryan DG, Brownie ER. Interactions of GTP with the ATP-grasp domain of GTP-specific succinyl-CoA synthetase. J Biol Chem. 2006;281:11058–65.CrossRefPubMed Fraser ME, Hayakawa K, Hume MS, Ryan DG, Brownie ER. Interactions of GTP with the ATP-grasp domain of GTP-specific succinyl-CoA synthetase. J Biol Chem. 2006;281:11058–65.CrossRefPubMed
33.
go back to reference Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRefPubMedPubMedCentral Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.CrossRefPubMedPubMedCentral
34.
go back to reference Tanner SM, Sturm AC, Baack EC, Liyanarachchi S, de la Chapelle A. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns. Orphanet J Rare Dis. 2012;7:56.CrossRefPubMedPubMedCentral Tanner SM, Sturm AC, Baack EC, Liyanarachchi S, de la Chapelle A. Inherited cobalamin malabsorption. Mutations in three genes reveal functional and ethnic patterns. Orphanet J Rare Dis. 2012;7:56.CrossRefPubMedPubMedCentral
35.
go back to reference Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17:444–51.CrossRefPubMed Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17:444–51.CrossRefPubMed
36.
go back to reference Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.CrossRefPubMedPubMedCentral Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.CrossRefPubMedPubMedCentral
37.
go back to reference Rincon A, Aguado C, Desviat LR, Sanchez-Alcudia R, Ugarte M, et al. Propionic and Methylmalonic Acidemia: antisense therapeutics for Intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet. 2007;81:1262–70.CrossRefPubMedPubMedCentral Rincon A, Aguado C, Desviat LR, Sanchez-Alcudia R, Ugarte M, et al. Propionic and Methylmalonic Acidemia: antisense therapeutics for Intronic variations causing aberrantly spliced messenger RNA. Am J Hum Genet. 2007;81:1262–70.CrossRefPubMedPubMedCentral
38.
go back to reference Carrozzo R, Verrigni D, Rasmussen M, de Coo R, Amartino H, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39:243–52.CrossRefPubMed Carrozzo R, Verrigni D, Rasmussen M, de Coo R, Amartino H, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39:243–52.CrossRefPubMed
39.
go back to reference de Sain-van der Velden MG, van der Ham M, Jans JJ, Visser G, Prinsen HC, et al. A new approach for fast metabolic diagnostics in CMAMMA. JIMD Rep. 2016;30:15–22.CrossRefPubMedPubMedCentral de Sain-van der Velden MG, van der Ham M, Jans JJ, Visser G, Prinsen HC, et al. A new approach for fast metabolic diagnostics in CMAMMA. JIMD Rep. 2016;30:15–22.CrossRefPubMedPubMedCentral
40.
go back to reference Chu J, Pupavac M, Watkins D, Tian X, Feng Y, et al. Next generation sequencing of patients with Mut methylmalonic aciduria: validation of somatic cell studies and identification of 16 novel mutations. Mol Genet Metab. 2016;118:264–71.CrossRefPubMed Chu J, Pupavac M, Watkins D, Tian X, Feng Y, et al. Next generation sequencing of patients with Mut methylmalonic aciduria: validation of somatic cell studies and identification of 16 novel mutations. Mol Genet Metab. 2016;118:264–71.CrossRefPubMed
41.
go back to reference Pedersen CB, Kolvraa S, Kolvraa A, Stenbroen V, Kjeldsen M, et al. The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet. 2008;124:43–56.CrossRefPubMed Pedersen CB, Kolvraa S, Kolvraa A, Stenbroen V, Kjeldsen M, et al. The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet. 2008;124:43–56.CrossRefPubMed
42.
go back to reference Lam C, Carter JM, Cederbaum SD, Neidich J, Gallant NM, et al. Analysis of cases of 3-methylcrotonyl CoA carboxylase deficiency (3-MCCD) in the California newborn screening program reported in the state database. Mol Genet Metab. 2013;110:477–83.CrossRefPubMed Lam C, Carter JM, Cederbaum SD, Neidich J, Gallant NM, et al. Analysis of cases of 3-methylcrotonyl CoA carboxylase deficiency (3-MCCD) in the California newborn screening program reported in the state database. Mol Genet Metab. 2013;110:477–83.CrossRefPubMed
43.
go back to reference Alfares A, Nunez LD, Al-Thihli K, Mitchell J, Melancon S, et al. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. J Med Genet. 2011;48:602–5.CrossRefPubMed Alfares A, Nunez LD, Al-Thihli K, Mitchell J, Melancon S, et al. Combined malonic and methylmalonic aciduria: exome sequencing reveals mutations in the ACSF3 gene in patients with a non-classic phenotype. J Med Genet. 2011;48:602–5.CrossRefPubMed
44.
go back to reference Matilainen S, Isohanni P, Euro L, Lonnqvist T, Pihko H, et al. Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion. Eur J Hum Genet. 2015;23:325–30.CrossRefPubMed Matilainen S, Isohanni P, Euro L, Lonnqvist T, Pihko H, et al. Mitochondrial encephalomyopathy and retinoblastoma explained by compound heterozygosity of SUCLA2 point mutation and 13q14 deletion. Eur J Hum Genet. 2015;23:325–30.CrossRefPubMed
Metadata
Title
Improving the diagnosis of cobalamin and related defects by genomic analysis, plus functional and structural assessment of novel variants
Authors
Sandra Brasil
Fátima Leal
Ana Vega
Rosa Navarrete
María Jesús Ecay
Lourdes R. Desviat
Casandra Riera
Natàlia Padilla
Xavier de la Cruz
Mari Luz Couce
Elena Martin-Hernández
Ana Morais
Consuelo Pedrón
Luis Peña-Quintana
Miriam Rigoldi
Norma Specola
Isabel Tavares de Almeida
Inmaculada Vives
Raquel Yahyaoui
Pilar Rodríguez-Pombo
Magdalena Ugarte
Celia Pérez-Cerda
Begoña Merinero
Belén Pérez
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0862-y

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue