Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Review

Transcriptome level analysis in Rett syndrome using human samples from different tissues

Authors: Stephen Shovlin, Daniela Tropea

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

The mechanisms of neuro-genetic disorders have been mostly investigated in the brain, however, for some pathologies, transcriptomic analysis in multiple tissues represent an opportunity and a challenge to understand the consequences of the genetic mutation. This is the case for Rett Syndrome (RTT): a neurodevelopmental disorder predominantly affecting females that is characterised by a loss of purposeful movements and language accompanied by gait abnormalities and hand stereotypies. Although the genetic aetiology is largely associated to Methyl CpG binding protein 2 (MECP2) mutations, linking the pathophysiology of RTT and its clinical symptoms to direct molecular mechanisms has been difficult.
One approach used to study the consequences of MECP2 dysfunction in patients, is to perform transcriptomic analysis in tissues derived from RTT patients or Induced Pluripotent Stem cells. The growing affordability and efficiency of this approach has led to a far greater understanding of the complexities of RTT syndrome but is also raised questions about previously held convictions such as the regulatory role of MECP2, the effects of different molecular mechanisms in different tissues and role of X Chromosome Inactivation in RTT.
In this review we consider the results of a number of different transcriptomic analyses in different patients-derived preparations to unveil specific trends in differential gene expression across the studies. Although the analyses present limitations- such as the limited sample size- overlaps exist across these studies, and they report dysregulations in three main categories: dendritic connectivity and synapse maturation, mitochondrial dysfunction, and glial cell activity.
These observations have a direct application to the disorder and give insights on the altered mechanisms in RTT, with implications on potential diagnostic criteria and treatments.
Literature
2.
go back to reference Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O’Callaghan F, et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 2006;43:729–734. doi:jmg.2006.041467. Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O’Callaghan F, et al. CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 2006;43:729–734. doi:jmg.2006.041467.
4.
go back to reference Takagi M, Sasaki G, Mitsui T, Honda M, Tanaka Y, Hasegawa T. A 2.0Mb microdeletion in proximal chromosome 14q12, involving regulatory elements of FOXG1, with the coding region of FOXG1 being unaffected, results in severe developmental delay, microcephaly, and hypoplasia of the corpus callosum. Eur J Med Genet. 2013;56:526–8. https://doi.org/10.1016/j.ejmg.2013.05.012.CrossRefPubMed Takagi M, Sasaki G, Mitsui T, Honda M, Tanaka Y, Hasegawa T. A 2.0Mb microdeletion in proximal chromosome 14q12, involving regulatory elements of FOXG1, with the coding region of FOXG1 being unaffected, results in severe developmental delay, microcephaly, and hypoplasia of the corpus callosum. Eur J Med Genet. 2013;56:526–8. https://​doi.​org/​10.​1016/​j.​ejmg.​2013.​05.​012.CrossRefPubMed
5.
go back to reference Hagberg B, Rasmussen P. “FORME FRUSTE” of RETT syndrome - a CASE report. Am J Med Genet. 1986;181:175–81. Hagberg B, Rasmussen P. “FORME FRUSTE” of RETT syndrome - a CASE report. Am J Med Genet. 1986;181:175–81.
7.
go back to reference Jan MMS, Dooley JM, Gordon KE. Male Rett syndrome variant: application of diagnostic criteria. Pediatr Neurol. 1999;20:238–40.CrossRefPubMed Jan MMS, Dooley JM, Gordon KE. Male Rett syndrome variant: application of diagnostic criteria. Pediatr Neurol. 1999;20:238–40.CrossRefPubMed
8.
go back to reference Hagberg B. Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:61–5.CrossRefPubMed Hagberg B. Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:61–5.CrossRefPubMed
11.
go back to reference Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL. Brief report: MECP2 mutations in people without rett syndrome. J Autism Dev Disord. 2014;44:703–11.CrossRefPubMedPubMedCentral Suter B, Treadwell-Deering D, Zoghbi HY, Glaze DG, Neul JL. Brief report: MECP2 mutations in people without rett syndrome. J Autism Dev Disord. 2014;44:703–11.CrossRefPubMedPubMedCentral
15.
go back to reference Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11:115–24.CrossRefPubMed Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11:115–24.CrossRefPubMed
16.
go back to reference Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VRB, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One. 2014;9 Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VRB, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One. 2014;9
18.
19.
go back to reference Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9 Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9
20.
go back to reference Xu J, Fang H, Hong H, Shen J, Su Z. A comprehensive study design reveals treatment- and transcript abundance-deprendent concordance between RNA-seq and microarray data 2014;32:926–32. Xu J, Fang H, Hong H, Shen J, Su Z. A comprehensive study design reveals treatment- and transcript abundance-deprendent concordance between RNA-seq and microarray data 2014;32:926–32.
21.
go back to reference Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, et al. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem. 2002;277:37001–8.CrossRefPubMed Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, Nielsen J, et al. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem. 2002;277:37001–8.CrossRefPubMed
24.
go back to reference Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, et al. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet. 2007;16:640–50.CrossRefPubMed Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, et al. FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet. 2007;16:640–50.CrossRefPubMed
25.
go back to reference Gibson JH, Slobedman B, K N H, Williamson SL, Minchenko D, El-Osta a, et al. downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 2010;11:53.CrossRefPubMedPubMedCentral Gibson JH, Slobedman B, K N H, Williamson SL, Minchenko D, El-Osta a, et al. downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci. 2010;11:53.CrossRefPubMedPubMedCentral
28.
go back to reference Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE. Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. Am J Neuroradiol. 2008;29:436–41.CrossRefPubMed Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE. Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. Am J Neuroradiol. 2008;29:436–41.CrossRefPubMed
29.
go back to reference Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, et al. Neuroanatomy of Rett Syndrome : a VolumetIric Imagmg study. Ann Neurol. 1993;34:227–34.CrossRefPubMed Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, et al. Neuroanatomy of Rett Syndrome : a VolumetIric Imagmg study. Ann Neurol. 1993;34:227–34.CrossRefPubMed
30.
go back to reference Nuutinen T, Suuronen T, Kyrylenko S, Huuskonen J, Salminen A. Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int. 2005;47:528–38.CrossRefPubMed Nuutinen T, Suuronen T, Kyrylenko S, Huuskonen J, Salminen A. Induction of clusterin/apoJ expression by histone deacetylase inhibitors in neural cells. Neurochem Int. 2005;47:528–38.CrossRefPubMed
31.
go back to reference Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19 june:187–191. doi:https://doi.org/10.1038/561. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998;19 june:187–191. doi:https://​doi.​org/​10.​1038/​561.
32.
go back to reference LeBlanc JJ, DeGregorio G, Centofante E, Vogel-Farley VK, Barnes K, Kaufmann WE, et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann Neurol. 2015;78:775–86.CrossRefPubMed LeBlanc JJ, DeGregorio G, Centofante E, Vogel-Farley VK, Barnes K, Kaufmann WE, et al. Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann Neurol. 2015;78:775–86.CrossRefPubMed
33.
go back to reference Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009;18:2431–42.CrossRefPubMedPubMedCentral Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009;18:2431–42.CrossRefPubMedPubMedCentral
34.
go back to reference Pecorelli A, Leoni G, Cervellati F, Canali R, Signorini C, Leoncini S, et al. Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of rett syndrome patients. Mediat Inflamm. 2013;2013 Pecorelli A, Leoni G, Cervellati F, Canali R, Signorini C, Leoncini S, et al. Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of rett syndrome patients. Mediat Inflamm. 2013;2013
42.
go back to reference Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet. 2011;20:2103–15.CrossRefPubMedPubMedCentral Cheung AYL, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet. 2011;20:2103–15.CrossRefPubMedPubMedCentral
44.
go back to reference Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from rett syndrome patients as in vitro disease model. PLoS One. 2011;6 Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from rett syndrome patients as in vitro disease model. PLoS One. 2011;6
45.
go back to reference Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in Rett syndrome human induced pluripotent stem cells. Front Psychiatry 2012;3 MAR:1–16. Cheung AYL, Horvath LM, Carrel L, Ellis J. X-chromosome inactivation in Rett syndrome human induced pluripotent stem cells. Front Psychiatry 2012;3 MAR:1–16.
46.
go back to reference Polo JJM, Liu S, Figueroa MME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55.CrossRefPubMedPubMedCentral Polo JJM, Liu S, Figueroa MME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55.CrossRefPubMedPubMedCentral
47.
go back to reference Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Hum Mol Genet. 2014;23:1045–55.CrossRefPubMed Tanaka Y, Kim KY, Zhong M, Pan X, Weissman SM, Park IH. Transcriptional regulation in pluripotent stem cells by methyl CpG-binding protein 2 (MeCP2). Hum Mol Genet. 2014;23:1045–55.CrossRefPubMed
48.
go back to reference Papadimitriou JM, Hockey A, Tan N, Masters CL. Rett Syndrome : Abnormal Membrane-Bound Lamellated Inclusions in Neurons and Oligodendroglia. 1988;368. Papadimitriou JM, Hockey A, Tan N, Masters CL. Rett Syndrome : Abnormal Membrane-Bound Lamellated Inclusions in Neurons and Oligodendroglia. 1988;368.
49.
go back to reference Jellinger K, Seitelberger F. Neuropathology of Rett syndrome. Am J Med Genet. 1986;24:259–88.CrossRef Jellinger K, Seitelberger F. Neuropathology of Rett syndrome. Am J Med Genet. 1986;24:259–88.CrossRef
50.
go back to reference Kishi N, Macklis JD. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004;27:306–21.CrossRefPubMed Kishi N, Macklis JD. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci. 2004;27:306–21.CrossRefPubMed
51.
go back to reference Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, et al. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol. 2009;514:240–58.CrossRefPubMed Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, et al. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol. 2009;514:240–58.CrossRefPubMed
52.
go back to reference Armstrong DD, Dunn K, Antalffy B. Decreased dendritic branching in frontal motor limbic cortex in Rett syndrome compared with trisomy 21. J Neuropathol Exp Neurol. 1998;57:1013–7.CrossRefPubMed Armstrong DD, Dunn K, Antalffy B. Decreased dendritic branching in frontal motor limbic cortex in Rett syndrome compared with trisomy 21. J Neuropathol Exp Neurol. 1998;57:1013–7.CrossRefPubMed
55.
go back to reference Kaufmann WE, Johnston MV, Blue ME. MeCP2 expression and function during brain development: implications for Rett syndrome’s pathogenesis and clinical evolution. Brain and Development. 2005;27(SUPPL. 1):77–87.CrossRef Kaufmann WE, Johnston MV, Blue ME. MeCP2 expression and function during brain development: implications for Rett syndrome’s pathogenesis and clinical evolution. Brain and Development. 2005;27(SUPPL. 1):77–87.CrossRef
59.
go back to reference Nguyen MVC, Du F, Felice CA, Shan X, Nigam A, Mandel G, et al. MeCP2 is critical for maintainng mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci. 2013;32:10021–34.CrossRef Nguyen MVC, Du F, Felice CA, Shan X, Nigam A, Mandel G, et al. MeCP2 is critical for maintainng mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci. 2013;32:10021–34.CrossRef
62.
go back to reference Coker SB, Melnyk AR. Rett syndorme and mitochondrial enzyme deficiencies. J Child Neurol. 1991;6:164–6.CrossRefPubMed Coker SB, Melnyk AR. Rett syndorme and mitochondrial enzyme deficiencies. J Child Neurol. 1991;6:164–6.CrossRefPubMed
63.
go back to reference E a S, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest. 2003;111:303–12.CrossRef E a S, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest. 2003;111:303–12.CrossRef
64.
go back to reference L a E, Melov S, Panov a, Cottrell B a, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 1999;96:4820–5.CrossRef L a E, Melov S, Panov a, Cottrell B a, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 1999;96:4820–5.CrossRef
65.
go back to reference Schulz JB, Lindenau J, Seyfried J, Dichgans J. Oxidative stress and neurodegeneration. Eur J Biochem. 2000;267:4904–11.CrossRefPubMed Schulz JB, Lindenau J, Seyfried J, Dichgans J. Oxidative stress and neurodegeneration. Eur J Biochem. 2000;267:4904–11.CrossRefPubMed
69.
go back to reference Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic- stem-cell-derived rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.CrossRefPubMedPubMedCentral Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic- stem-cell-derived rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.CrossRefPubMedPubMedCentral
70.
go back to reference Janc OA, Hüser MA, Dietrich K, Kempkes B, Menzfeld C, Hülsmann S, et al. Systemic radical scavenger treatment of a mouse model of Rett syndrome: merits and limitations of the vitamin E derivative Trolox. Front Cell Neurosci 2016;10 November:1–20. doi:https://doi.org/10.3389/fncel.2016.00266. Janc OA, Hüser MA, Dietrich K, Kempkes B, Menzfeld C, Hülsmann S, et al. Systemic radical scavenger treatment of a mouse model of Rett syndrome: merits and limitations of the vitamin E derivative Trolox. Front Cell Neurosci 2016;10 November:1–20. doi:https://​doi.​org/​10.​3389/​fncel.​2016.​00266.
73.
go back to reference Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SBG, Guyenet PG, et al. Wild type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484:105–9.CrossRefPubMedPubMedCentral Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SBG, Guyenet PG, et al. Wild type microglia arrest pathology in a mouse model of Rett syndrome. Nature. 2012;484:105–9.CrossRefPubMedPubMedCentral
75.
go back to reference Jieqi W. A. PA. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature. 2015;109:105–9. Jieqi W. A. PA. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature. 2015;109:105–9.
79.
go back to reference Okabe Y, Takahashi T, Mitsumasu C, Ichiro KK, Tanaka E, Matsuishi T. Alterations of gene expression and glutamate clearance in astrocytes derived from an mecp2-null mouse model of rett syndrome. PLoS One. 2012;7 Okabe Y, Takahashi T, Mitsumasu C, Ichiro KK, Tanaka E, Matsuishi T. Alterations of gene expression and glutamate clearance in astrocytes derived from an mecp2-null mouse model of rett syndrome. PLoS One. 2012;7
80.
go back to reference Maragakis NJ, Dietrich J, Wong V, Xue H, Mayer-Proschel M, Rao MS, et al. Glutamate transporter expression and function in human glial progenitors. Glia. 2004;45:133–43.CrossRefPubMed Maragakis NJ, Dietrich J, Wong V, Xue H, Mayer-Proschel M, Rao MS, et al. Glutamate transporter expression and function in human glial progenitors. Glia. 2004;45:133–43.CrossRefPubMed
81.
go back to reference Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, et al. Role of excitatory amino acid transporter-2 (EAAT2) and Glutamate in neurodegeneration: Opportunities for developing novel Theraputics. 2012;226:2484–2493. Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, et al. Role of excitatory amino acid transporter-2 (EAAT2) and Glutamate in neurodegeneration: Opportunities for developing novel Theraputics. 2012;226:2484–2493.
82.
go back to reference Xie Z, Harris-White ME, Wals PA, Frautschy SA, Finch CE, Morgan TE. Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem. 2005;93:1038–46.CrossRefPubMed Xie Z, Harris-White ME, Wals PA, Frautschy SA, Finch CE, Morgan TE. Apolipoprotein J (clusterin) activates rodent microglia in vivo and in vitro. J Neurochem. 2005;93:1038–46.CrossRefPubMed
83.
go back to reference Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski XJ. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. J Neurosci. 2015;35:11281–91.CrossRefPubMedPubMedCentral Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski XJ. Neuronal Interleukin-4 as a Modulator of Microglial Pathways and Ischemic Brain Damage. J Neurosci. 2015;35:11281–91.CrossRefPubMedPubMedCentral
85.
go back to reference Leoncini S, De Felice C, Signorini C, Zollo G, Cortelazzo A, Durand T, et al. Cytokine Dysregulation in MECP2- and CDKL5-related Rett syndrome: relationships with aberrant redox homeostasis, inflammation, and ??-3 PUFAs. Oxidative Med Cell Longev. 2015;2015 Leoncini S, De Felice C, Signorini C, Zollo G, Cortelazzo A, Durand T, et al. Cytokine Dysregulation in MECP2- and CDKL5-related Rett syndrome: relationships with aberrant redox homeostasis, inflammation, and ??-3 PUFAs. Oxidative Med Cell Longev. 2015;2015
86.
go back to reference Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol. 2013;34:144–50.CrossRefPubMed Derecki NC, Cronk JC, Kipnis J. The role of microglia in brain maintenance: implications for Rett syndrome. Trends Immunol. 2013;34:144–50.CrossRefPubMed
87.
go back to reference Colvin L, Leonard H, de Klerk N, Davis M, Weaving L, Williamson S, et al. Refining the phenotype of common mutations in Rett syndrome. J Med Genet. 2004;41:25–30.CrossRefPubMedPubMedCentral Colvin L, Leonard H, de Klerk N, Davis M, Weaving L, Williamson S, et al. Refining the phenotype of common mutations in Rett syndrome. J Med Genet. 2004;41:25–30.CrossRefPubMedPubMedCentral
88.
go back to reference Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, et al. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–21.CrossRefPubMedPubMedCentral Neul JL, Fang P, Barrish J, Lane J, Caeg EB, Smith EO, et al. Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology. 2008;70:1313–21.CrossRefPubMedPubMedCentral
90.
go back to reference Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet. 2001;68:1093–101.CrossRefPubMedPubMedCentral Trappe R, Laccone F, Cobilanschi J, Meins M, Huppke P, Hanefeld F, et al. MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin. Am J Hum Genet. 2001;68:1093–101.CrossRefPubMedPubMedCentral
92.
go back to reference Dragich J, Houwink-Manville I, Schanen C. Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet Rev. 2000;9:2365–75.CrossRef Dragich J, Houwink-Manville I, Schanen C. Rett syndrome: a surprising result of mutation in MECP2. Hum Mol Genet Rev. 2000;9:2365–75.CrossRef
93.
94.
go back to reference Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471–81.CrossRefPubMed Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88:471–81.CrossRefPubMed
96.
go back to reference Kudo S. Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol Cell Biol. 1998;18:5492–9.CrossRefPubMedPubMedCentral Kudo S. Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol Cell Biol. 1998;18:5492–9.CrossRefPubMedPubMedCentral
97.
go back to reference Kifayathullah LA, Arunachalam JP, Bodda C, Agbemenyah HY, Laccone FA, Mannan AU. MeCP2 mutant protein is expressed in astrocytes as well as in neurons and localizes in the nucleus. Cytogenet Genome Res. 2010;129:290–7.CrossRefPubMed Kifayathullah LA, Arunachalam JP, Bodda C, Agbemenyah HY, Laccone FA, Mannan AU. MeCP2 mutant protein is expressed in astrocytes as well as in neurons and localizes in the nucleus. Cytogenet Genome Res. 2010;129:290–7.CrossRefPubMed
98.
go back to reference Baker SA, Lombardi LM, Zoghbi HY. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2. J Biol Chem. 2015;290:22485–93.CrossRefPubMedPubMedCentral Baker SA, Lombardi LM, Zoghbi HY. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2. J Biol Chem. 2015;290:22485–93.CrossRefPubMedPubMedCentral
Metadata
Title
Transcriptome level analysis in Rett syndrome using human samples from different tissues
Authors
Stephen Shovlin
Daniela Tropea
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0857-8

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue