Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

17p13.3 genomic rearrangement in a Chinese family with split-hand/foot malformation with long bone deficiency: report of a complicated duplication with marked variation in phenotype

Authors: Yuqi Shen, Nuo Si, Zhe Liu, Fang Liu, Xiaolu Meng, Ying Zhang, Xue Zhang

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Split hand/foot malformation (SHFM) is a genetically heterogeneous limb malformation with variable expressivity. SHFM with tibia or femur aplasia is called SHFM with long bone deficiency (SHFLD). 17p13.3 duplications containing BHLHA9 are associated with SHFLD. Cases with variable SHFLD phenotype and different 17p13.3 duplicated regions are reported. The severity of long bone defect could not be simply explained by BHLHA9 overdosage or 17p13.3 duplication.

Methods

A four-generation Chinese SHFM family was recruited. Three family members have long bone defects, one male was severely affected with hypoplasia or aplasia in three of four limbs. Linkage analysis and direct sequencing of candidate genes were used to exclude six responsible genes/loci for isolated SHFM. Array comparative genomic hybridization (CGH) was performed to detect copy number variations on a genome-wide scale, and quantitative real-time polymerase chain reaction (qPCR) assays were designed to validate the identified copy number variation in the index and other family members.

Results

No mutations were found in genes or loci linked to isolated SHFM. A ~ 966 kb duplication was identified in 17p13.3 by array CGH, in which BHLHA9 surrounding region presented as triplication. The qPCR assays confirmed the indicated 17p13.3 duplication as well as BHLHA9 triplication in all available affected family members and other two asymptomatic carriers. Given the incomplete penetrance in SHFLD, those two carriers were regarded as non-penetrant, which suggested that the genomic rearrangement was co-segregated with malformation in this family.

Conclusions

The present study reports an additional SHFLD family case with 17p13.3 genomic rearrangement. To our knowledge, the 966 kb genomic rearrangement is larger in size than any previously reported SHFLD-associated 17p13.3 duplication, and the present family shows marked phenotypic variability with two asymptomatic carriers and one patient with an extremely severe phenotype. This rare case provides the opportunity to identify underlying genotype-phenotype correlations between SHFLD and 17p13.3 genomic rearrangement.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A. 2013;161A(11):2860–72.CrossRefPubMed Gurrieri F, Everman DB. Clinical, genetic, and molecular aspects of split-hand/foot malformation: an update. Am J Med Genet A. 2013;161A(11):2860–72.CrossRefPubMed
2.
go back to reference Naveed M, Al-Ali MT, Murthy SK, Al-Hajali S, Al-Khaja N, Deutsch S, et al. Ectrodactyly with aplasia of long bones (OMIM; 119100) in a large inbred Arab family with an apparent autosomal dominant inheritance and reduced penetrance: clinical and genetic analysis. Am J Med Genet A. 2006;140((13):1440–6.CrossRef Naveed M, Al-Ali MT, Murthy SK, Al-Hajali S, Al-Khaja N, Deutsch S, et al. Ectrodactyly with aplasia of long bones (OMIM; 119100) in a large inbred Arab family with an apparent autosomal dominant inheritance and reduced penetrance: clinical and genetic analysis. Am J Med Genet A. 2006;140((13):1440–6.CrossRef
3.
go back to reference Naveed M, Nath SK, Gaines M, Al-Ali MT, Al-Khaja N, Hutchings D, et al. Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet. 2007;80(1):105–11.CrossRefPubMed Naveed M, Nath SK, Gaines M, Al-Ali MT, Al-Khaja N, Hutchings D, et al. Genomewide linkage scan for split-hand/foot malformation with long-bone deficiency in a large Arab family identifies two novel susceptibility loci on chromosomes 1q42.2-q43 and 6q14.1. Am J Hum Genet. 2007;80(1):105–11.CrossRefPubMed
4.
go back to reference Lezirovitz K, Maestrelli SR, Cotrim NH, Otto PA, Pearson PL, Mingroni-Netto RC. A novel locus for split-hand/foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1-17p13.3. Hum Genet. 2008;123(6):625–31.CrossRefPubMed Lezirovitz K, Maestrelli SR, Cotrim NH, Otto PA, Pearson PL, Mingroni-Netto RC. A novel locus for split-hand/foot malformation associated with tibial hemimelia (SHFLD syndrome) maps to chromosome region 17p13.1-17p13.3. Hum Genet. 2008;123(6):625–31.CrossRefPubMed
5.
go back to reference Armour CM, Bulman DE, Jarinova O, Rogers RC, Clarkson KB, DuPont BR, et al. 17p13.3 microduplications are associated with split-hand/foot malformation and long-bone deficiency (SHFLD). European journal of human genetics : EJHG. 2011;19(11):1144–51.CrossRefPubMed Armour CM, Bulman DE, Jarinova O, Rogers RC, Clarkson KB, DuPont BR, et al. 17p13.3 microduplications are associated with split-hand/foot malformation and long-bone deficiency (SHFLD). European journal of human genetics : EJHG. 2011;19(11):1144–51.CrossRefPubMed
6.
go back to reference Curry CJ, Rosenfeld JA, Grant E, Gripp KW, Anderson C, Aylsworth AS, et al. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A. 2013;161a(8):1833–52.CrossRefPubMedPubMedCentral Curry CJ, Rosenfeld JA, Grant E, Gripp KW, Anderson C, Aylsworth AS, et al. The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A. 2013;161a(8):1833–52.CrossRefPubMedPubMedCentral
7.
go back to reference Petit F, Andrieux J, Demeer B, Collet LM, Copin H, Boudry-Labis E, et al. Split-hand/foot malformation with long-bone deficiency and BHLHA9 duplication: two cases and expansion of the phenotype to radial agenesis. Eur J Med Genet. 2013;56(2):88–92.CrossRefPubMed Petit F, Andrieux J, Demeer B, Collet LM, Copin H, Boudry-Labis E, et al. Split-hand/foot malformation with long-bone deficiency and BHLHA9 duplication: two cases and expansion of the phenotype to radial agenesis. Eur J Med Genet. 2013;56(2):88–92.CrossRefPubMed
8.
go back to reference Luk HM, Wong VC, Lo IF, Chan KY, Lau ET, Kan AS, et al. A prenatal case of split-hand malformation associated with 17p13.3 triplication - a dilemma in genetic counseling. Eur J Med Get. 2014;57(2–3):81–4.CrossRef Luk HM, Wong VC, Lo IF, Chan KY, Lau ET, Kan AS, et al. A prenatal case of split-hand malformation associated with 17p13.3 triplication - a dilemma in genetic counseling. Eur J Med Get. 2014;57(2–3):81–4.CrossRef
9.
go back to reference Petit F, Jourdain AS, Andrieux J, Baujat G, Baumann C, Beneteau C, et al. Split hand/foot malformation with long-bone deficiency and BHLHA9 duplication: report of 13 new families. Clin Genet. 2014;85(5):464–9.CrossRefPubMed Petit F, Jourdain AS, Andrieux J, Baujat G, Baumann C, Beneteau C, et al. Split hand/foot malformation with long-bone deficiency and BHLHA9 duplication: report of 13 new families. Clin Genet. 2014;85(5):464–9.CrossRefPubMed
10.
go back to reference Nagata E, Kano H, Kato F, Yamaguchi R, Nakashima S, Takayama S, et al. Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex. Orphanet J Rare Dis. 2014;9:125.CrossRefPubMedPubMedCentral Nagata E, Kano H, Kato F, Yamaguchi R, Nakashima S, Takayama S, et al. Japanese founder duplications/triplications involving BHLHA9 are associated with split-hand/foot malformation with or without long bone deficiency and Gollop-Wolfgang complex. Orphanet J Rare Dis. 2014;9:125.CrossRefPubMedPubMedCentral
11.
go back to reference Kataoka K, Matsushima T, Ito Y, Sato T, Yokoyama S, Asahara H. Bhlha9 regulates apical ectodermal ridge formation during limb development. J Bone Miner Metab. 2018;36(1):64–72.CrossRefPubMed Kataoka K, Matsushima T, Ito Y, Sato T, Yokoyama S, Asahara H. Bhlha9 regulates apical ectodermal ridge formation during limb development. J Bone Miner Metab. 2018;36(1):64–72.CrossRefPubMed
12.
go back to reference Klopocki E, Lohan S, Doelken SC, Stricker S, Ockeloen CW. Soares Thiele de Aguiar R et al. duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet. 2012;49(2):119–25.CrossRefPubMed Klopocki E, Lohan S, Doelken SC, Stricker S, Ockeloen CW. Soares Thiele de Aguiar R et al. duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet. 2012;49(2):119–25.CrossRefPubMed
13.
go back to reference Bruno DL, Anderlid BM, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, et al. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet. 2010;47(5):299–311.CrossRefPubMed Bruno DL, Anderlid BM, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, et al. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet. 2010;47(5):299–311.CrossRefPubMed
14.
go back to reference Mizuhashi K, Kanamoto T, Moriishi T, Muranishi Y, Miyazaki T, Terada K, et al. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum Mol Genet. 2014;23(11):2953–67.CrossRefPubMed Mizuhashi K, Kanamoto T, Moriishi T, Muranishi Y, Miyazaki T, Terada K, et al. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum Mol Genet. 2014;23(11):2953–67.CrossRefPubMed
15.
go back to reference Malik S, Percin FE, Bornholdt D, Albrecht B, Percesepe A, Koch MC, et al. Mutations affecting the BHLHA9 DNA-binding domain cause MSSD, mesoaxial synostotic syndactyly with phalangeal reduction, Malik-Percin type. Am J Hum Genet. 2014;95(6):649–59.CrossRefPubMedPubMedCentral Malik S, Percin FE, Bornholdt D, Albrecht B, Percesepe A, Koch MC, et al. Mutations affecting the BHLHA9 DNA-binding domain cause MSSD, mesoaxial synostotic syndactyly with phalangeal reduction, Malik-Percin type. Am J Hum Genet. 2014;95(6):649–59.CrossRefPubMedPubMedCentral
16.
go back to reference Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008;45(6):370–5.CrossRefPubMed Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008;45(6):370–5.CrossRefPubMed
Metadata
Title
17p13.3 genomic rearrangement in a Chinese family with split-hand/foot malformation with long bone deficiency: report of a complicated duplication with marked variation in phenotype
Authors
Yuqi Shen
Nuo Si
Zhe Liu
Fang Liu
Xiaolu Meng
Ying Zhang
Xue Zhang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0838-y

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue