Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID

Authors: Heide Stirnadel-Farrant, Mahesh Kudari, Nadia Garman, Jessica Imrie, Bikramjit Chopra, Stefania Giannelli, Michela Gabaldo, Ambra Corti, Stefano Zancan, Alessandro Aiuti, Maria Pia Cicalese, Rohit Batta, Jonathan Appleby, Mario Davinelli, Pauline Ng

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Strimvelis (autologous CD34+ cells transduced to express adenosine deaminase [ADA]) is the first ex vivo stem cell gene therapy approved by the European Medicines Agency (EMA), indicated as a single treatment for patients with ADA-severe combined immunodeficiency (ADA-SCID) who lack a suitable matched related bone marrow donor. Existing primary immunodeficiency registries are tailored to transplantation outcomes and do not capture the breadth of safety and efficacy endpoints required by the EMA for the long-term monitoring of gene therapies. Furthermore, for extended monitoring of Strimvelis, the young age of children treated, small patient numbers, and broad geographic distribution of patients all increase the risk of loss to follow-up before sufficient data have been collected. Establishing individual investigator sites would be impractical and uneconomical owing to the small number of patients from each location receiving Strimvelis.

Results

An observational registry has been established to monitor the safety and effectiveness of Strimvelis in up to 50 patients over a minimum of 15 years. To address the potential challenges highlighted above, data will be collected by a single investigator site at Ospedale San Raffaele (OSR), Milan, Italy, and entered into the registry via a central electronic platform. Patients/families and the patient’s local physician will also be able to submit healthcare information directly to the registry using a uniquely designed electronic platform. Data entry will be monitored by a Gene Therapy Registry Centre (funded by GlaxoSmithKline) who will ensure that necessary information is collected and flows between OSR, the patient/family and the patient’s local healthcare provider.

Conclusion

The Strimvelis registry sets a precedent for the safety monitoring of future gene therapies. A unique, patient-focused design has been implemented to address the challenges of long-term follow-up of patients treated with gene therapy for a rare disease. Strategies to ensure data completeness and patient retention in the registry will help fulfil pharmacovigilance requirements. Collaboration with partners is being sought to expand from a treatment registry into a disease registry. Using practical and cost-efficient approaches, the Strimvelis registry is hoped to encourage further innovation in registry design within orphan drug development.
Literature
1.
go back to reference Hershfield M. Adenosine Deaminase Deficiency. NCBI Bookshelf: University of Washington, Seattle; 1993–2017. Hershfield M. Adenosine Deaminase Deficiency. NCBI Bookshelf: University of Washington, Seattle; 1993–2017.
2.
go back to reference Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.CrossRefPubMedPubMedCentral Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.CrossRefPubMedPubMedCentral
3.
go back to reference de Pagter AP, Bredius RG, Kuijpers TW, Tramper J, van der Burg M, van Montfrans J, et al. Overview of 15-year severe combined immunodeficiency in the Netherlands: towards newborn blood spot screening. Eur J Pediatr. 2015;174:1183–8.CrossRefPubMedPubMedCentral de Pagter AP, Bredius RG, Kuijpers TW, Tramper J, van der Burg M, van Montfrans J, et al. Overview of 15-year severe combined immunodeficiency in the Netherlands: towards newborn blood spot screening. Eur J Pediatr. 2015;174:1183–8.CrossRefPubMedPubMedCentral
4.
go back to reference Ryser O, Morell A, Hitzig WH. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol. 1988;8:479–85.CrossRefPubMed Ryser O, Morell A, Hitzig WH. Primary immunodeficiencies in Switzerland: first report of the national registry in adults and children. J Clin Immunol. 1988;8:479–85.CrossRefPubMed
5.
go back to reference Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32:82–8.CrossRefPubMed Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32:82–8.CrossRefPubMed
6.
go back to reference Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York state: experience from the first two years. J Clin Immunol. 2014;34:289–303.CrossRefPubMedPubMedCentral Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York state: experience from the first two years. J Clin Immunol. 2014;34:289–303.CrossRefPubMedPubMedCentral
7.
go back to reference Yee A, De Ravin SS, Elliott E, Ziegler JB, Contributors to the Australian Paediatric Surveillance U. Severe combined immunodeficiency: a national surveillance study. Pediatr Allergy Immunol. 2008;19:298–302.CrossRefPubMed Yee A, De Ravin SS, Elliott E, Ziegler JB, Contributors to the Australian Paediatric Surveillance U. Severe combined immunodeficiency: a national surveillance study. Pediatr Allergy Immunol. 2008;19:298–302.CrossRefPubMed
8.
go back to reference Hassan A, Booth C, Brightwell A, Allwood Z, Veys P, Rao K, et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood. 2012;120:3615–24. quiz 26CrossRefPubMed Hassan A, Booth C, Brightwell A, Allwood Z, Veys P, Rao K, et al. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency. Blood. 2012;120:3615–24. quiz 26CrossRefPubMed
9.
go back to reference European Society for Blood and Marrow Transplantation (EBMT) European Society for Immunodeficiencies (ESID Inborn Errors Working Parties. EBMT/ESID guidelines for haematopoietic stem cell transplantation for primary immunodeficiencies. 2017. European Society for Blood and Marrow Transplantation (EBMT) European Society for Immunodeficiencies (ESID Inborn Errors Working Parties. EBMT/ESID guidelines for haematopoietic stem cell transplantation for primary immunodeficiencies. 2017.
10.
go back to reference Dvorak CC, Hassan A, Slatter MA, Honig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134:935–43. e15CrossRefPubMedPubMedCentral Dvorak CC, Hassan A, Slatter MA, Honig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134:935–43. e15CrossRefPubMedPubMedCentral
11.
go back to reference Baffelli R, Notarangelo LD, Imberti L, Hershfield MS, Serana F, Santisteban I, et al. Diagnosis, treatment and long-term follow up of patients with ADA deficiency: a single-center experience. J Clin Immunol. 2015;35:624–37.CrossRefPubMed Baffelli R, Notarangelo LD, Imberti L, Hershfield MS, Serana F, Santisteban I, et al. Diagnosis, treatment and long-term follow up of patients with ADA deficiency: a single-center experience. J Clin Immunol. 2015;35:624–37.CrossRefPubMed
12.
go back to reference Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin Immunol. 2005;117:133–43.CrossRefPubMed Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). Clin Immunol. 2005;117:133–43.CrossRefPubMed
13.
go back to reference Serana F, Sottini A, Chiarini M, Zanotti C, Ghidini C, Lanfranchi A, et al. The different extent of B and T cell immune reconstitution after hematopoietic stem cell transplantation and enzyme replacement therapies in SCID patients with adenosine deaminase deficiency. J Immunol. 2010;185:7713–22.CrossRefPubMed Serana F, Sottini A, Chiarini M, Zanotti C, Ghidini C, Lanfranchi A, et al. The different extent of B and T cell immune reconstitution after hematopoietic stem cell transplantation and enzyme replacement therapies in SCID patients with adenosine deaminase deficiency. J Immunol. 2010;185:7713–22.CrossRefPubMed
15.
go back to reference Montiel-Equihua CA, Thrasher AJ, Gaspar HB. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency. Curr Gene Ther. 2012;12:57–65.CrossRefPubMed Montiel-Equihua CA, Thrasher AJ, Gaspar HB. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency. Curr Gene Ther. 2012;12:57–65.CrossRefPubMed
16.
go back to reference Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270:475–80.CrossRefPubMed Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270:475–80.CrossRefPubMed
17.
go back to reference GlaxoSmithKline. Strimvelis: Summary of Product Characteristics. European Medicines Agency. Last updated June 2016. GlaxoSmithKline. Strimvelis: Summary of Product Characteristics. European Medicines Agency. Last updated June 2016.
18.
go back to reference Aiuti A, Roncarolo MG, Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med. 2017;9:237–40. Aiuti A, Roncarolo MG, Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med. 2017;9:237–40.
19.
go back to reference Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128:45–54.CrossRefPubMedPubMedCentral Cicalese MP, Ferrua F, Castagnaro L, Pajno R, Barzaghi F, Giannelli S, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood. 2016;128:45–54.CrossRefPubMedPubMedCentral
20.
go back to reference Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of short- and medium-term safety. Mol Ther. 2018;26:917–31. Cicalese MP, Ferrua F, Castagnaro L, Rolfe K, De Boever E, Reinhardt RR, et al. Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of short- and medium-term safety. Mol Ther. 2018;26:917–31.
22.
go back to reference GlaxoSmithKline. GSK 2696273 clinical development program – median follow up – summary of clinical efficacy. Data on File. 2017;RD/SVE/0024/17. GlaxoSmithKline. GSK 2696273 clinical development program – median follow up – summary of clinical efficacy. Data on File. 2017;RD/SVE/0024/17.
23.
go back to reference Kohn DB, Gaspar HB. How we manage adenosine deaminase-deficient severe combined immune deficiency (ADA SCID). J Clin Immunol. 2017;37:351–6.CrossRefPubMed Kohn DB, Gaspar HB. How we manage adenosine deaminase-deficient severe combined immune deficiency (ADA SCID). J Clin Immunol. 2017;37:351–6.CrossRefPubMed
24.
go back to reference Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120:3635–46.CrossRefPubMedPubMedCentral Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C, et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120:3635–46.CrossRefPubMedPubMedCentral
25.
go back to reference Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270:470–5.CrossRefPubMed Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270:470–5.CrossRefPubMed
26.
go back to reference Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–3.CrossRefPubMed Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–3.CrossRefPubMed
27.
go back to reference Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360:447–58.CrossRefPubMed Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360:447–58.CrossRefPubMed
28.
go back to reference Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther. 2006;14:505–13.CrossRefPubMed Gaspar HB, Bjorkegren E, Parsley K, Gilmour KC, King D, Sinclair J, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther. 2006;14:505–13.CrossRefPubMed
29.
go back to reference Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S, et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 2011;3:97ra80.PubMed Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S, et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med. 2011;3:97ra80.PubMed
30.
go back to reference Otsu M, Yamada M, Nakajima S, Kida M, Maeyama Y, Hatano N, et al. Outcomes in two Japanese adenosine deaminase-deficiency patients treated by stem cell gene therapy with no cytoreductive conditioning. J Clin Immunol. 2015;35:384–98.CrossRefPubMed Otsu M, Yamada M, Nakajima S, Kida M, Maeyama Y, Hatano N, et al. Outcomes in two Japanese adenosine deaminase-deficiency patients treated by stem cell gene therapy with no cytoreductive conditioning. J Clin Immunol. 2015;35:384–98.CrossRefPubMed
31.
go back to reference Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118:3132–42.CrossRefPubMedPubMedCentral Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118:3132–42.CrossRefPubMedPubMedCentral
32.
go back to reference Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ, et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2011;3:97ra79.PubMed Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ, et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2011;3:97ra79.PubMed
34.
go back to reference Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra33.CrossRefPubMed Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra33.CrossRefPubMed
35.
go back to reference Aiuti A, Bacchetta R, Seger R, Villa A, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies: part 2. Curr Opin Immunol. 2012;24:585–91.CrossRefPubMed Aiuti A, Bacchetta R, Seger R, Villa A, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies: part 2. Curr Opin Immunol. 2012;24:585–91.CrossRefPubMed
36.
go back to reference Siler U, Paruzynski A, Holtgreve-Grez H, Kuzmenko E, Koehl U, Renner ED, et al. Successful combination of sequential gene therapy and rescue Allo-HSCT in two children with X-CGD - importance of timing. Curr Gene Ther. 2015;15:416–27.CrossRefPubMed Siler U, Paruzynski A, Holtgreve-Grez H, Kuzmenko E, Koehl U, Renner ED, et al. Successful combination of sequential gene therapy and rescue Allo-HSCT in two children with X-CGD - importance of timing. Curr Gene Ther. 2015;15:416–27.CrossRefPubMed
37.
go back to reference Grez M, Reichenbach J, Schwable J, Seger R, Dinauer MC, Thrasher AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther. 2011;19:28–35.CrossRefPubMed Grez M, Reichenbach J, Schwable J, Seger R, Dinauer MC, Thrasher AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther. 2011;19:28–35.CrossRefPubMed
38.
go back to reference Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Driessen GJ, Dalm VA, et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156:154–62.CrossRefPubMed Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Driessen GJ, Dalm VA, et al. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156:154–62.CrossRefPubMed
39.
go back to reference Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, et al. Cancers related to Immunodeficiencies: update and perspectives. Front Immunol. 2016;7:365.CrossRefPubMedPubMedCentral Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, et al. Cancers related to Immunodeficiencies: update and perspectives. Front Immunol. 2016;7:365.CrossRefPubMedPubMedCentral
40.
go back to reference Salavoura K, Kolialexi A, Tsangaris G, Mavrou A. Development of cancer in patients with primary immunodeficiencies. Anticancer Res. 2008;28:1263–9.PubMed Salavoura K, Kolialexi A, Tsangaris G, Mavrou A. Development of cancer in patients with primary immunodeficiencies. Anticancer Res. 2008;28:1263–9.PubMed
44.
go back to reference United States Immunodeficiency Network (USIDNET); a program of the Immune Deficiency Foundation (IDF). Primary Immunodeficiency (PI) Diseases Registry at USIDNET. 2017. United States Immunodeficiency Network (USIDNET); a program of the Immune Deficiency Foundation (IDF). Primary Immunodeficiency (PI) Diseases Registry at USIDNET. 2017.
46.
go back to reference Coi A, Santoro M, Villaverde-Hueso A, Lipucci Di Paola M, Gainotti S, Taruscio D, et al. The quality of rare disease registries: evaluation and characterization. Public Health Genomics. 2016;19:108–15.CrossRefPubMed Coi A, Santoro M, Villaverde-Hueso A, Lipucci Di Paola M, Gainotti S, Taruscio D, et al. The quality of rare disease registries: evaluation and characterization. Public Health Genomics. 2016;19:108–15.CrossRefPubMed
48.
go back to reference Taruscio D, Vittozzi L, Choquet R, Heimdal K, Iskrov G, Kodra Y, et al. National registries of rare diseases in Europe: an overview of the current situation and experiences. Public Health Genomics. 2015;18:20–5.CrossRefPubMed Taruscio D, Vittozzi L, Choquet R, Heimdal K, Iskrov G, Kodra Y, et al. National registries of rare diseases in Europe: an overview of the current situation and experiences. Public Health Genomics. 2015;18:20–5.CrossRefPubMed
49.
go back to reference Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis. 2017;40:543–54.CrossRefPubMedPubMedCentral Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis. 2017;40:543–54.CrossRefPubMedPubMedCentral
Metadata
Title
Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID
Authors
Heide Stirnadel-Farrant
Mahesh Kudari
Nadia Garman
Jessica Imrie
Bikramjit Chopra
Stefania Giannelli
Michela Gabaldo
Ambra Corti
Stefano Zancan
Alessandro Aiuti
Maria Pia Cicalese
Rohit Batta
Jonathan Appleby
Mario Davinelli
Pauline Ng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0791-9

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue