Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2018

Open Access 01-12-2018 | Research

Targeted next-generation sequencing analysis in couples at increased risk for autosomal recessive disorders

Authors: Katalin Komlosi, Stefan Diederich, Desiree Lucia Fend-Guella, Oliver Bartsch, Jennifer Winter, Ulrich Zechner, Michael Beck, Peter Meyer, Susann Schweiger

Published in: Orphanet Journal of Rare Diseases | Issue 1/2018

Login to get access

Abstract

Background

Many of the genetic childhood disorders leading to death in the pre- or neonatal period or during early childhood follow autosomal recessive modes of inheritance and bear specific challenges for genetic counseling and prenatal diagnostics. Parents are carriers but clinically unaffected, and diseases are rare but have recurrence risks of 25% in the same family. Often, affected children (or fetuses) die before a genetic diagnosis can be established, post-mortem analysis and phenotypic descriptions are insufficient and DNA from affected fetuses or children is not available for later analysis. A genetic diagnosis showing biallelic causative mutations is, however, the requirement for targeted carrier testing in parents and prenatal and preimplantation genetic diagnosis in further pregnancies.

Methods

We undertook targeted next-generation sequencing (NGS) for carrier screening of autosomal recessive lethal disorders in 8 consanguineous and 5 non-consanguineous couples with one or more affected children. We searched for heterozygous variants (non-synonymous coding or splice variants) in parents’ DNA, using a set of 430 genes known to be causative for rare autosomal recessive diseases with poor prognosis, and then filtering for variants present in genes overlapping in both partners. Putative pathogenic variants were tested for cosegregation in affected fetuses or children where material was available.

Results

The diagnosis for the premature death in children was established in 5 of the 13 couples. Out of the 8 couples in which no causative diagnosis could be established 4 consented to undergo further analysis, in two of those a potentially causative variant in a novel candidate gene was identified.

Conclusions

For the families in whom causative variants could be identified, these may now be used for prenatal and preimplantation genetic diagnostics. Our data show that NGS based gene panel sequencing of selected genes involved in lethal autosomal recessive disorders is an effective tool for carrier screening in parents and for the identification of recessive gene defects and offers the possibility of prenatal and preimplantation genetic diagnosis in further pregnancies in families that have experienced deaths in early childhood and /or multiple abortions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ellard S, Kivuva E, Turnpenny P, Stals K, Johnson M, Xie W, Caswell R, Lango Allen H. An exome sequencing strategy to diagnose lethal autosomal recessive disorders. Eur J Hum Genet. 2015;23:401–4.CrossRefPubMed Ellard S, Kivuva E, Turnpenny P, Stals K, Johnson M, Xie W, Caswell R, Lango Allen H. An exome sequencing strategy to diagnose lethal autosomal recessive disorders. Eur J Hum Genet. 2015;23:401–4.CrossRefPubMed
2.
go back to reference Smith LD, Willig LK, Kingsmore SF. Whole-exome sequencing and whole-genome sequencing in critically ill neonates suspected to have single-gene disorders. Cold Spring Harb Perspect Med. 2015;18:6. Smith LD, Willig LK, Kingsmore SF. Whole-exome sequencing and whole-genome sequencing in critically ill neonates suspected to have single-gene disorders. Cold Spring Harb Perspect Med. 2015;18:6.
3.
go back to reference Kingsmore SF. Newborn testing and screening by whole-genome sequencing. Genet Med. 2016;18:214–6.CrossRefPubMed Kingsmore SF. Newborn testing and screening by whole-genome sequencing. Genet Med. 2016;18:214–6.CrossRefPubMed
4.
go back to reference van der Hout S, Holtkamp KC, Henneman L, de Wert G, Dondorp WJ. Advantages of expanded universal carrier screening: what is at stake? Eur J Hum Genet. 2016;25:17–21.CrossRefPubMedPubMedCentral van der Hout S, Holtkamp KC, Henneman L, de Wert G, Dondorp WJ. Advantages of expanded universal carrier screening: what is at stake? Eur J Hum Genet. 2016;25:17–21.CrossRefPubMedPubMedCentral
5.
6.
go back to reference Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRefPubMedPubMedCentral Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRefPubMedPubMedCentral
7.
go back to reference Hu H, Wienker TF, Musante L, Kalscheuer VM, Kahrizi K, Najmabadi H, Ropers HH. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations. Hum Mutat. 2014;35:1427–35.CrossRefPubMed Hu H, Wienker TF, Musante L, Kalscheuer VM, Kahrizi K, Najmabadi H, Ropers HH. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations. Hum Mutat. 2014;35:1427–35.CrossRefPubMed
8.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.CrossRefPubMedPubMedCentral
9.
go back to reference Meyer S, Yilmaz U, Kim YJ, Steinfeld R, Meyberg-Solomayer G, Oehl-Jaschkowitz B, Tzschach A, Gortner L, Igel J, Schofer O. Congenital CLN disease in two siblings. Wien Med Wochenschr. 2015;165:210–3.CrossRefPubMed Meyer S, Yilmaz U, Kim YJ, Steinfeld R, Meyberg-Solomayer G, Oehl-Jaschkowitz B, Tzschach A, Gortner L, Igel J, Schofer O. Congenital CLN disease in two siblings. Wien Med Wochenschr. 2015;165:210–3.CrossRefPubMed
10.
go back to reference Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, Saftig P, Gartner J. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78:988–98.CrossRefPubMedPubMedCentral Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, Saftig P, Gartner J. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78:988–98.CrossRefPubMedPubMedCentral
11.
go back to reference Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, Estivill X, MacKenzie RE, Hudson TJ, Rosenblatt DS. The molecular basis of glutamate formiminotransferase deficiency. Hum Mutat. 2003;22:67–73.CrossRefPubMed Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, Estivill X, MacKenzie RE, Hudson TJ, Rosenblatt DS. The molecular basis of glutamate formiminotransferase deficiency. Hum Mutat. 2003;22:67–73.CrossRefPubMed
12.
go back to reference Wang AM, Schindler D, Desnick RJ. Schindler disease: the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy. J Clin Invest. 1990;86:1752–6.CrossRefPubMedPubMedCentral Wang AM, Schindler D, Desnick RJ. Schindler disease: the molecular lesion in the alpha-N-acetylgalactosaminidase gene that causes an infantile neuroaxonal dystrophy. J Clin Invest. 1990;86:1752–6.CrossRefPubMedPubMedCentral
13.
go back to reference Keulemans JLM, Reuser AJJ, Kroos MA, Willemsen R, Hermans MMP, van den Ouweland AMW, de Jong JGN, Wevers RA, Renier WO, Schindler D, Coll MJ, Chabas A, Sakuraba H, Suzuki Y, van Diggelen OP. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and phenotype. J Med Genet. 1996;33:458–64.CrossRefPubMedPubMedCentral Keulemans JLM, Reuser AJJ, Kroos MA, Willemsen R, Hermans MMP, van den Ouweland AMW, de Jong JGN, Wevers RA, Renier WO, Schindler D, Coll MJ, Chabas A, Sakuraba H, Suzuki Y, van Diggelen OP. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: new mutations and the paradox between genotype and phenotype. J Med Genet. 1996;33:458–64.CrossRefPubMedPubMedCentral
14.
go back to reference Bakker HD, de Sonnaville MLCS, Vreken P, Abeling NGGM, Groener JEM, Keulemans JLM, van Diggelen OP. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? Eur J Hum Genet. 2001;9:91–6.CrossRefPubMed Bakker HD, de Sonnaville MLCS, Vreken P, Abeling NGGM, Groener JEM, Keulemans JLM, van Diggelen OP. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? Eur J Hum Genet. 2001;9:91–6.CrossRefPubMed
16.
go back to reference Andresen BS, Olpin S, Poorthuis BJHM, Scholte HR, Vianey-Saban C, Wanders R, Ijlst L, Morris A, Pourfarzam M, Bartlett K, Baumgartner ER, deKlerk JBC, Schroeder LD, Corydon TJ, Lund H, Winter V, Bross P, Bolund L, Gregersen N. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet. 1999;64:479–94.CrossRefPubMedPubMedCentral Andresen BS, Olpin S, Poorthuis BJHM, Scholte HR, Vianey-Saban C, Wanders R, Ijlst L, Morris A, Pourfarzam M, Bartlett K, Baumgartner ER, deKlerk JBC, Schroeder LD, Corydon TJ, Lund H, Winter V, Bross P, Bolund L, Gregersen N. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet. 1999;64:479–94.CrossRefPubMedPubMedCentral
17.
go back to reference Rudd E, Bryceson YT, Zheng C, Edner J, wood SM, Ramme K, Gavhed S, Gurgey a, Hellebostad M, Bechensteen AG, Ljunggren HG, Fadeel B, Nordenskjold M, Henter JI. Spectrum and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet. 2008;45:134–41.CrossRefPubMed Rudd E, Bryceson YT, Zheng C, Edner J, wood SM, Ramme K, Gavhed S, Gurgey a, Hellebostad M, Bechensteen AG, Ljunggren HG, Fadeel B, Nordenskjold M, Henter JI. Spectrum and clinical and functional implications of UNC13D mutations in familial haemophagocytic lymphohistiocytosis. J Med Genet. 2008;45:134–41.CrossRefPubMed
18.
go back to reference Saitsu H, Yamashita S, Tanaka Y, Tsurusaki Y, Nakashima M, Miyake N, Matsumoto N. Compound heterozygous BRAT1 mutations cause familial Ohtahara syndrome with hypertonia and microcephaly. J Hum Genet. 2014;59:687–90.CrossRefPubMed Saitsu H, Yamashita S, Tanaka Y, Tsurusaki Y, Nakashima M, Miyake N, Matsumoto N. Compound heterozygous BRAT1 mutations cause familial Ohtahara syndrome with hypertonia and microcephaly. J Hum Genet. 2014;59:687–90.CrossRefPubMed
19.
go back to reference Horn D, Weschke B, Knierim E, Fischer-Zirnsak B, Stenzel W, Schuelke M, Zemojtel T. BRAT1 mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. Am J Med Genet A. 2016;170:2274–81.CrossRefPubMed Horn D, Weschke B, Knierim E, Fischer-Zirnsak B, Stenzel W, Schuelke M, Zemojtel T. BRAT1 mutations are associated with infantile epileptic encephalopathy, mitochondrial dysfunction, and survival into childhood. Am J Med Genet A. 2016;170:2274–81.CrossRefPubMed
20.
go back to reference Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T, Moyes KW, Dowen S, Otey CA, Crispin DA, George RD, Whitcomb DC, Brentnall TA. Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med. 2006;3:e516.CrossRefPubMedPubMedCentral Pogue-Geile KL, Chen R, Bronner MP, Crnogorac-Jurcevic T, Moyes KW, Dowen S, Otey CA, Crispin DA, George RD, Whitcomb DC, Brentnall TA. Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med. 2006;3:e516.CrossRefPubMedPubMedCentral
21.
go back to reference Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L, Xu G, Sun X, Kong H, Gu M, Chen S, Chen Z, Wang Z. Disruption of palladin results in neural tube closure defects in mice. Mol Cell Neurosci. 2005;29:507–15.CrossRefPubMed Luo H, Liu X, Wang F, Huang Q, Shen S, Wang L, Xu G, Sun X, Kong H, Gu M, Chen S, Chen Z, Wang Z. Disruption of palladin results in neural tube closure defects in mice. Mol Cell Neurosci. 2005;29:507–15.CrossRefPubMed
22.
go back to reference Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 1998;94:739–50.CrossRefPubMed Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell. 1998;94:739–50.CrossRefPubMed
23.
go back to reference Bao Q, Lu W, Rabinowitz JD, Shi Y. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell. 2007;25:181–92.CrossRefPubMed Bao Q, Lu W, Rabinowitz JD, Shi Y. Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell. 2007;25:181–92.CrossRefPubMed
24.
go back to reference Honarpour N, Gilbert SL, Lahn BT, Wang X, Herz J. Apaf-1 deficiency and neural tube closure defects are found in fog mice. Proc Nat Acad Sci. 2001;98:9683–7.CrossRefPubMedPubMedCentral Honarpour N, Gilbert SL, Lahn BT, Wang X, Herz J. Apaf-1 deficiency and neural tube closure defects are found in fog mice. Proc Nat Acad Sci. 2001;98:9683–7.CrossRefPubMedPubMedCentral
25.
go back to reference Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Béna F, Gimelli S, Stathaki E, Temtamy S, Mégarbané A, Masri A, Aglan MS, Zaki MS, Bottani A, Fokstuen S, Gwanmesia L, Aliferis K, Bustamante Eduardo M, Stamoulis G, Psoni S, Kitsiou-Tzeli S, Fryssira H, Kanavakis E, Al-Allawi N, Sefiani A, Al Hait S, Elalaoui SC, Jalkh N, Al-Gazali L, Al-Jasmi F, Bouhamed HC, Abdalla E, Cooper DN, Hamamy H, Antonarakis SE. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat. 2014;35(10):1203.CrossRefPubMed Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Béna F, Gimelli S, Stathaki E, Temtamy S, Mégarbané A, Masri A, Aglan MS, Zaki MS, Bottani A, Fokstuen S, Gwanmesia L, Aliferis K, Bustamante Eduardo M, Stamoulis G, Psoni S, Kitsiou-Tzeli S, Fryssira H, Kanavakis E, Al-Allawi N, Sefiani A, Al Hait S, Elalaoui SC, Jalkh N, Al-Gazali L, Al-Jasmi F, Bouhamed HC, Abdalla E, Cooper DN, Hamamy H, Antonarakis SE. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat. 2014;35(10):1203.CrossRefPubMed
26.
go back to reference Teeuw M, Waisfisz Q, Zwijnenburg PJ, Sistermans EA, Weiss MM, Henneman L, ten Kate LP, Cornel MC, Meijers-Heijboer H. First steps in exploring prospective exome sequencing of consanguineous couples. Eur J Med Genet. 2014;57:613–6.CrossRefPubMed Teeuw M, Waisfisz Q, Zwijnenburg PJ, Sistermans EA, Weiss MM, Henneman L, ten Kate LP, Cornel MC, Meijers-Heijboer H. First steps in exploring prospective exome sequencing of consanguineous couples. Eur J Med Genet. 2014;57:613–6.CrossRefPubMed
27.
go back to reference Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3:65ra4.CrossRefPubMedPubMedCentral Bell CJ, Dinwiddie DL, Miller NA, Hateley SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, Sheth V, Woodward JE, Peckham HE, Schroth GP, Kim RW, Kingsmore SF. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3:65ra4.CrossRefPubMedPubMedCentral
28.
go back to reference Janssens S, Chokoshvili D, Vears DF, De Paepe A, Borry P. Pre- and post-testing counseling considerations for the provision of expanded carrier screening: exploration of European geneticists' views. BMC Med Ethics. 2017;18(46) Janssens S, Chokoshvili D, Vears DF, De Paepe A, Borry P. Pre- and post-testing counseling considerations for the provision of expanded carrier screening: exploration of European geneticists' views. BMC Med Ethics. 2017;18(46)
29.
go back to reference Bittles AH, Black ML. Evolution in health and medicine Sackler colloquium: consanguinity, human evolution, and complex diseases. Proc Natl Acad Sci U S A. 2010;107:1779–86.CrossRefPubMedPubMedCentral Bittles AH, Black ML. Evolution in health and medicine Sackler colloquium: consanguinity, human evolution, and complex diseases. Proc Natl Acad Sci U S A. 2010;107:1779–86.CrossRefPubMedPubMedCentral
30.
go back to reference Teeuw M, Loukili G, Bartels E, ten Kate LP, Cornel MC, Henneman L. Consanguineous marriage and reproductive risk: attitudes and understanding of ethnic groups practising consanguinity in western society. Eur J Hum Genet. 2014;22:452–7.CrossRefPubMed Teeuw M, Loukili G, Bartels E, ten Kate LP, Cornel MC, Henneman L. Consanguineous marriage and reproductive risk: attitudes and understanding of ethnic groups practising consanguinity in western society. Eur J Hum Genet. 2014;22:452–7.CrossRefPubMed
31.
go back to reference Sheridan E, Wright J, Corry P, Oddie S, Small N, Parslow RC. Analysis of the born in Bradford birth cohort--authors' reply. Lancet. 2014;383:123.CrossRefPubMed Sheridan E, Wright J, Corry P, Oddie S, Small N, Parslow RC. Analysis of the born in Bradford birth cohort--authors' reply. Lancet. 2014;383:123.CrossRefPubMed
Metadata
Title
Targeted next-generation sequencing analysis in couples at increased risk for autosomal recessive disorders
Authors
Katalin Komlosi
Stefan Diederich
Desiree Lucia Fend-Guella
Oliver Bartsch
Jennifer Winter
Ulrich Zechner
Michael Beck
Peter Meyer
Susann Schweiger
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2018
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-018-0763-0

Other articles of this Issue 1/2018

Orphanet Journal of Rare Diseases 1/2018 Go to the issue