Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01-12-2017 | Research

A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease

Authors: Barry J. Byrne, Tarekegn Geberhiwot, Bruce A. Barshop, Richard Barohn, Derralynn Hughes, Drago Bratkovic, Claude Desnuelle, Pascal Laforet, Eugen Mengel, Mark Roberts, Peter Haroldsen, Kristin Reilley, Kala Jayaram, Ke Yang, Liron Walsh, on behalf of the POM-001/002 Investigators

Published in: Orphanet Journal of Rare Diseases | Issue 1/2017

Login to get access

Abstract

Background

Late-onset Pompe disease is a rare genetic neuromuscular disorder caused by lysosomal acid alpha-glucosidase (GAA) deficiency that ultimately results in mobility loss and respiratory failure. Current enzyme replacement therapy with recombinant human (rh)GAA has demonstrated efficacy in subjects with late-onset Pompe disease. However, long-term effects of rhGAA on pulmonary function have not been observed, likely related to inefficient delivery of rhGAA to skeletal muscle lysosomes and associated deficits in the central nervous system. To address this limitation, reveglucosidase alfa, a novel insulin-like growth factor 2 (IGF2)-tagged GAA analogue with improved lysosomal uptake, was developed. This study evaluated the pharmacokinetics, safety, and exploratory efficacy of reveglucosidase alfa in 22 subjects with late-onset Pompe disease who were previously untreated with rhGAA.

Results

Reveglucosidase alfa plasma concentrations increased linearly with dose, and the elimination half-life was <1.2 h. Eighteen of 22 subjects completed 72 weeks of treatment. The most common adverse events were hypoglycemia (63%), dizziness, fall, headache, and nausea (55% for each). Serious adverse events included hypersensitivity (n = 1), symptomatic hypoglycemia (n = 2), presyncope (n = 1), and acute cardiac failure (n = 1). In the dose-escalation study, all treated subjects tested positive for anti-reveglucosidase alfa, anti-rhGAA, anti-IGF1, and anti-IGF2 antibodies at least once. Subjects receiving 20 mg/kg of reveglucosidase alfa demonstrated increases in predicted maximum inspiratory pressure (13.9%), predicted maximum expiratory pressure (8.0%), forced vital capacity (−0.4%), maximum voluntary ventilation (7.4 L/min), and mean absolute walking distance (22.3 m on the 6-min walk test) at 72 weeks.

Conclusions

Additional studies are needed to further assess the safety and efficacy of this approach. Improvements in respiratory muscle strength, lung function, and walking endurance in subjects with LOPD may make up for the risk of hypersensitivity reactions and hypoglycemia. Reveglucosidase alfa may provide a new treatment option for patients with late-onset Pompe disease.

Trial registration

ISRCTN01435772 and ISRCTN01230801, registered 27 October 2011.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wokke JH, Escolar DM, Pestronk A, et al. Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve. 2008;38:1236–45.CrossRefPubMed Wokke JH, Escolar DM, Pestronk A, et al. Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve. 2008;38:1236–45.CrossRefPubMed
2.
go back to reference Engel AG, Hirschhorn R. Acid maltase deficiency. In: Engel AG, Franzine-Armstrong C, editors. Myology: basic and clinical. New York: McGraw-Hill; 1996. p. 1533–53. Engel AG, Hirschhorn R. Acid maltase deficiency. In: Engel AG, Franzine-Armstrong C, editors. Myology: basic and clinical. New York: McGraw-Hill; 1996. p. 1533–53.
4.
go back to reference Hirschhorn R, Reuser AJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver CK, Beaudet AL, Sly WS, et al., editors. The metabolic & molecular bases of inherited disease, vol. 3. 8th ed. New York: McGraw-Hill; 2001. p. 3389–420. Hirschhorn R, Reuser AJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver CK, Beaudet AL, Sly WS, et al., editors. The metabolic & molecular bases of inherited disease, vol. 3. 8th ed. New York: McGraw-Hill; 2001. p. 3389–420.
5.
go back to reference Van der Beek NA, Hagemans ML, Reuser AJ, et al. Rate of disease progression during long-term follow-up of patients with late-onset Pompe disease. Neuromuscul Disord. 2009;19:113–7.CrossRefPubMed Van der Beek NA, Hagemans ML, Reuser AJ, et al. Rate of disease progression during long-term follow-up of patients with late-onset Pompe disease. Neuromuscul Disord. 2009;19:113–7.CrossRefPubMed
6.
go back to reference Mellies U, Stehling F, Dohna-Schwake C, Ragette R, Teschler H, Voit T. Respiratory failure in Pompe disease: treatment with noninvasive ventilation. Neurology. 2005;64:1465–7.CrossRefPubMed Mellies U, Stehling F, Dohna-Schwake C, Ragette R, Teschler H, Voit T. Respiratory failure in Pompe disease: treatment with noninvasive ventilation. Neurology. 2005;64:1465–7.CrossRefPubMed
7.
go back to reference Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe's disease; a review of 225 published cases. J Neurol. 2005;252:875–84.CrossRefPubMed Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe's disease; a review of 225 published cases. J Neurol. 2005;252:875–84.CrossRefPubMed
8.
go back to reference Baldo BA. Enzymes approved for human therapy: indications, mechanisms and adverse effects. Bio Drugs. 2015;29:31–55. Baldo BA. Enzymes approved for human therapy: indications, mechanisms and adverse effects. Bio Drugs. 2015;29:31–55.
10.
go back to reference van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med. 2010;362:1396–406.CrossRefPubMed van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med. 2010;362:1396–406.CrossRefPubMed
11.
go back to reference Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68:99–109.CrossRefPubMed Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68:99–109.CrossRefPubMed
13.
go back to reference Kishnani PS, Beckemeyer AA. New therapeutic approaches for Pompe disease: enzyme replacement therapy and beyond. Pediatr Endocrinol Rev. 2014;12(Suppl 1):114–24.PubMed Kishnani PS, Beckemeyer AA. New therapeutic approaches for Pompe disease: enzyme replacement therapy and beyond. Pediatr Endocrinol Rev. 2014;12(Suppl 1):114–24.PubMed
14.
go back to reference Nicolino M, Byrne B, Wraith JE, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med. 2009;11:210–9.CrossRefPubMed Nicolino M, Byrne B, Wraith JE, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med. 2009;11:210–9.CrossRefPubMed
16.
go back to reference Zhu Y, Li X, McVie-Wylie A, et al. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J. 2005;389:619–28.CrossRefPubMedPubMedCentral Zhu Y, Li X, McVie-Wylie A, et al. Carbohydrate-remodelled acid alpha-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J. 2005;389:619–28.CrossRefPubMedPubMedCentral
17.
go back to reference McVie-Wylie AJ, Lee KL, Qiu H, et al. Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab. 2008;94:448–55.CrossRefPubMedPubMedCentral McVie-Wylie AJ, Lee KL, Qiu H, et al. Biochemical and pharmacological characterization of different recombinant acid alpha-glucosidase preparations evaluated for the treatment of Pompe disease. Mol Genet Metab. 2008;94:448–55.CrossRefPubMedPubMedCentral
18.
go back to reference Tong PY, Kornfeld S. Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. J Biol Chem. 1989;264:7970–5.PubMed Tong PY, Kornfeld S. Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. J Biol Chem. 1989;264:7970–5.PubMed
19.
go back to reference Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid alpha-glucosidase enhances muscle glycogen clearance in pompe mice. J Biol Chem. 2013;288:1428–38.CrossRefPubMed Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid alpha-glucosidase enhances muscle glycogen clearance in pompe mice. J Biol Chem. 2013;288:1428–38.CrossRefPubMed
20.
go back to reference Safety/Tolerability/Pharmacokinetic (PK)/Pharmacodynamics (PD) Study of BMN701 in Patients With Late-Onset Pompe Disease. In: ClinicalTrialsgov [internet] Bethesda (MD): National Library of Medicine (US) 2000- [cited 2015 Aug 07] Accessed 18 Nov 2016; Available from: http://bit.ly/2g3Pubc NLM Identifier: NCT01230801. Safety/Tolerability/Pharmacokinetic (PK)/Pharmacodynamics (PD) Study of BMN701 in Patients With Late-Onset Pompe Disease. In: ClinicalTrialsgov [internet] Bethesda (MD): National Library of Medicine (US) 2000- [cited 2015 Aug 07] Accessed 18 Nov 2016; Available from: http://​bit.​ly/​2g3Pubc NLM Identifier: NCT01230801.
21.
go back to reference Extension Study for Patients Who Have Participated in a BMN 701 Study. In: ClinicalTrialsgov [internet] Bethesda (MD): National Library of Medicine (US) 2000- [cited 2015 Aug 07] Accessed 18 Nov 2016; Available from: http://bit.ly/2foq1Wa Identifier: NCT01435772. Extension Study for Patients Who Have Participated in a BMN 701 Study. In: ClinicalTrialsgov [internet] Bethesda (MD): National Library of Medicine (US) 2000- [cited 2015 Aug 07] Accessed 18 Nov 2016; Available from: http://​bit.​ly/​2foq1Wa Identifier: NCT01435772.
22.
23.
go back to reference LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci U S A. 2004;101:3083–8.CrossRefPubMedPubMedCentral LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci U S A. 2004;101:3083–8.CrossRefPubMedPubMedCentral
24.
go back to reference SIP P. Phenotype variations in early onset Pompe disease: diagnosis and treatment results with Myozyme®. In: Inherited neuromuscular diseases. Netherlands: Springer; 2009. p. 39–46. SIP P. Phenotype variations in early onset Pompe disease: diagnosis and treatment results with Myozyme®. In: Inherited neuromuscular diseases. Netherlands: Springer; 2009. p. 39–46.
25.
go back to reference Merk T, Wibmer T, Schumann C, Kruger S. Glycogen storage disease type II (Pompe disease)--influence of enzyme replacement therapy in adults. Eur J Neurol. 2009;16:274–7.CrossRefPubMed Merk T, Wibmer T, Schumann C, Kruger S. Glycogen storage disease type II (Pompe disease)--influence of enzyme replacement therapy in adults. Eur J Neurol. 2009;16:274–7.CrossRefPubMed
26.
go back to reference Burrow TA, Bailey LA, Kinnett DG, Hopkin RJ. Acute progression of neuromuscular findings in infantile Pompe disease. Pediatr Neurol. 2010;42:455–8.CrossRefPubMed Burrow TA, Bailey LA, Kinnett DG, Hopkin RJ. Acute progression of neuromuscular findings in infantile Pompe disease. Pediatr Neurol. 2010;42:455–8.CrossRefPubMed
27.
go back to reference van der Ploeg AT, Barohn R, Carlson L, et al. Open-label extension study following the late-onset treatment study (LOTS) of alglucosidase alfa. Mol Genet Metab. 2012;107:456–61.CrossRefPubMed van der Ploeg AT, Barohn R, Carlson L, et al. Open-label extension study following the late-onset treatment study (LOTS) of alglucosidase alfa. Mol Genet Metab. 2012;107:456–61.CrossRefPubMed
28.
go back to reference Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.CrossRefPubMedPubMedCentral Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.CrossRefPubMedPubMedCentral
29.
go back to reference Banugaria SG, Patel TT, Mackey J, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metab. 2012;105:677–80.CrossRefPubMedPubMedCentral Banugaria SG, Patel TT, Mackey J, et al. Persistence of high sustained antibodies to enzyme replacement therapy despite extensive immunomodulatory therapy in an infant with Pompe disease: need for agents to target antibody-secreting plasma cells. Mol Genet Metab. 2012;105:677–80.CrossRefPubMedPubMedCentral
30.
go back to reference Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14:135–42.CrossRefPubMedPubMedCentral Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14:135–42.CrossRefPubMedPubMedCentral
31.
go back to reference American Thoracic Society/European Respiratory S. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.CrossRef American Thoracic Society/European Respiratory S. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med. 2002;166:518–624.CrossRef
32.
go back to reference Evans JA, Whitelaw WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009;54:1348–59.PubMed Evans JA, Whitelaw WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009;54:1348–59.PubMed
33.
go back to reference Farrero E, Antón A, Egea CJ, et al. Guidelines for the management of respiratory complications in patients with neuromuscular disease. Arch Bronconeumol. 2013;49:306–13.CrossRefPubMed Farrero E, Antón A, Egea CJ, et al. Guidelines for the management of respiratory complications in patients with neuromuscular disease. Arch Bronconeumol. 2013;49:306–13.CrossRefPubMed
34.
go back to reference Mendoza M, Gelinas DF, Moore DH, Miller RG. A comparison of maximal inspiratory pressure and forced vital capacity as potential criteria for initiating non-invasive ventilation in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007;8:106–11.CrossRefPubMed Mendoza M, Gelinas DF, Moore DH, Miller RG. A comparison of maximal inspiratory pressure and forced vital capacity as potential criteria for initiating non-invasive ventilation in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007;8:106–11.CrossRefPubMed
35.
go back to reference Johnson EM, Roberts M, Mozaffar T, Young P, Quartel A, Berger KI. Pulmonary function tests (maximum inspiratory pressure, maximum expiratory pressure, vital capacity, forced vital capacity) predict ventilator use in late-onset Pompe disease. Neuromuscul Disord. 2016;26:136–45.CrossRefPubMed Johnson EM, Roberts M, Mozaffar T, Young P, Quartel A, Berger KI. Pulmonary function tests (maximum inspiratory pressure, maximum expiratory pressure, vital capacity, forced vital capacity) predict ventilator use in late-onset Pompe disease. Neuromuscul Disord. 2016;26:136–45.CrossRefPubMed
36.
go back to reference Estenne M, Gevenois PA, Kinnear W, Soudon P, Heilporn A, De Troyer A. Lung volume restriction in patients with chronic respiratory muscle weakness: the role of microatelectasis. Thorax. 1993;48:698–701.CrossRefPubMedPubMedCentral Estenne M, Gevenois PA, Kinnear W, Soudon P, Heilporn A, De Troyer A. Lung volume restriction in patients with chronic respiratory muscle weakness: the role of microatelectasis. Thorax. 1993;48:698–701.CrossRefPubMedPubMedCentral
37.
go back to reference Roberts M, Kishnani PS, van der Ploeg AT, et al. The prevalence and impact of scoliosis in Pompe disease: lessons learned from the Pompe registry. Mol Genet Metab. 2011;104:574–82.CrossRefPubMed Roberts M, Kishnani PS, van der Ploeg AT, et al. The prevalence and impact of scoliosis in Pompe disease: lessons learned from the Pompe registry. Mol Genet Metab. 2011;104:574–82.CrossRefPubMed
38.
go back to reference Bergofsky EH. Respiratory failure in disorders of the thoracic cage. Am Rev Respir Dis. 1979;119:643–69.PubMed Bergofsky EH. Respiratory failure in disorders of the thoracic cage. Am Rev Respir Dis. 1979;119:643–69.PubMed
39.
40.
go back to reference van der Beek NA, van Capelle CI, van der Velden-van Etten KI, et al. Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease. Mol Genet Metab. 2011;104:129–36.CrossRefPubMed van der Beek NA, van Capelle CI, van der Velden-van Etten KI, et al. Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease. Mol Genet Metab. 2011;104:129–36.CrossRefPubMed
41.
go back to reference Deehan M, Garces S, Kramer D, et al. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14:569–74.CrossRefPubMed Deehan M, Garces S, Kramer D, et al. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14:569–74.CrossRefPubMed
Metadata
Title
A study on the safety and efficacy of reveglucosidase alfa in patients with late-onset Pompe disease
Authors
Barry J. Byrne
Tarekegn Geberhiwot
Bruce A. Barshop
Richard Barohn
Derralynn Hughes
Drago Bratkovic
Claude Desnuelle
Pascal Laforet
Eugen Mengel
Mark Roberts
Peter Haroldsen
Kristin Reilley
Kala Jayaram
Ke Yang
Liron Walsh
on behalf of the POM-001/002 Investigators
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2017
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0693-2

Other articles of this Issue 1/2017

Orphanet Journal of Rare Diseases 1/2017 Go to the issue