Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2017

Open Access 01-12-2017 | Research

Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study

Authors: Simon A. Jones, Sandra Rojas-Caro, Anthony G. Quinn, Mark Friedman, Sachin Marulkar, Fatih Ezgu, Osama Zaki, J. Jay Gargus, Joanne Hughes, Dominique Plantaz, Roshni Vara, Stephen Eckert, Jean-Baptiste Arnoux, Anais Brassier, Kim-Hanh Le Quan Sang, Vassili Valayannopoulos

Published in: Orphanet Journal of Rare Diseases | Issue 1/2017

Login to get access

Abstract

Background

Infants presenting with lysosomal acid lipase deficiency have marked failure to thrive, diarrhea, massive hepatosplenomegaly, anemia, rapidly progressive liver disease, and death typically in the first 6 months of life; the only available potential treatment has been hematopoietic stem cell transplantation, which is associated with high morbidity and mortality in this population. The study objective was to evaluate safety and efficacy (including survival) of enzyme replacement with sebelipase alfa in infants with lysosomal acid lipase deficiency. This is an ongoing multicenter, open-label, phase 2/3 study conducted in nine countries. The study enrolled infants with growth failure prior to 6 months of age with rapidly progressive lysosomal acid lipase deficiency; they received once-weekly doses of sebelipase alfa initiated at 0.35 mg/kg with intrapatient dose escalation up to 5 mg/kg. The main outcome of interest is survival to 12 months and survival beyond 24 months of age.

Results

Nine patients were enrolled; median age at baseline was 3.0 months (range 1.1–5.8 months). Sixty-seven percent (exact 95% CI 30%–93%) of sebelipase alfa–treated infants survived to 12 months of age compared with 0% (exact 95% CI 0%–16%) for a historical control group (n = 21). Patients who survived to age 12 months exhibited improvements in weight-for-age, reductions in markers of liver dysfunction and hepatosplenomegaly, and improvements in anemia and gastrointestinal symptoms. Three deaths occurred early (first few months of life), two patients died because of advanced disease, and a third patient died following complications of non-protocol-specified abdominal paracentesis. A fourth death occurred at 15 months of age and was related to other clinical conditions. The five surviving patients have survived to age ≥24 months with continued sebelipase alfa treatment; all have displayed marked improvement in growth parameters and liver function. Serious adverse events considered related to sebelipase alfa were reported in one of the nine infants (infusion reaction: tachycardia, pallor, chills, and pyrexia). Most infusion-associated reactions were mild and non-serious.

Conclusion

Sebelipase alfa markedly improved survival with substantial clinically meaningful improvements in growth and other key disease manifestations in infants with rapidly progressive lysosomal acid lipase deficiency

Trial registration

Clinicaltrials.gov NCT01371825. Registered 9 June 2011.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lysosomal acid lipase deficiency (#278000). Online Mendelian Inheritance in Man web site: omim.org. Accessed 19 Sept 2016. Lysosomal acid lipase deficiency (#278000). Online Mendelian Inheritance in Man web site: omim.org. Accessed 19 Sept 2016.
2.
go back to reference Grabowski GA, Charnas L, Du H. Lysosomal acid lipase deficiencies: the Wolman disease/cholesteryl ester storage disease spectrum. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, editors. Metabolic and molecular bases of inherited disease. 8th ed. New York, NY: McGraw-Hill; 2012. Chapter 142. Grabowski GA, Charnas L, Du H. Lysosomal acid lipase deficiencies: the Wolman disease/cholesteryl ester storage disease spectrum. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, editors. Metabolic and molecular bases of inherited disease. 8th ed. New York, NY: McGraw-Hill; 2012. Chapter 142.
3.
go back to reference Zhang B, Porto AF. Cholesteryl ester storage disease: protean presentations of lysosomal acid lipase deficiency. J Pediatr Gastroenterol Nutr. 2013;56:682–5.CrossRefPubMed Zhang B, Porto AF. Cholesteryl ester storage disease: protean presentations of lysosomal acid lipase deficiency. J Pediatr Gastroenterol Nutr. 2013;56:682–5.CrossRefPubMed
4.
go back to reference Hoffman EP, Barr ML, Giovanni MA, Murray MF, et al. Lysosomal acid lipase deficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, editors. GeneReviews®. Seattle, WA: University of Washington, Seattle; 1993. Hoffman EP, Barr ML, Giovanni MA, Murray MF, et al. Lysosomal acid lipase deficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, editors. GeneReviews®. Seattle, WA: University of Washington, Seattle; 1993.
5.
go back to reference Abramov A, Schorr S, Wolman M. Generalized xanthomatosis with calcified adrenals. AMA J Dis Child. 1956;91:282–6.PubMed Abramov A, Schorr S, Wolman M. Generalized xanthomatosis with calcified adrenals. AMA J Dis Child. 1956;91:282–6.PubMed
6.
go back to reference Crocker AC, Vawter GF, Neuhauser EB, Rosowsky A. Wolman’s disease: three new patients with a recently described lipidosis. Pediatrics. 1965;35:627–40.PubMed Crocker AC, Vawter GF, Neuhauser EB, Rosowsky A. Wolman’s disease: three new patients with a recently described lipidosis. Pediatrics. 1965;35:627–40.PubMed
7.
go back to reference Jones SA, Banikazemi M, Bialer M, Cederbaum S, Chan A, Dhawan A, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18:452–8.CrossRefPubMed Jones SA, Banikazemi M, Bialer M, Cederbaum S, Chan A, Dhawan A, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18:452–8.CrossRefPubMed
8.
go back to reference Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58:1230–43.CrossRefPubMed Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58:1230–43.CrossRefPubMed
9.
go back to reference Reiner Z, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, et al. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235:21–30.CrossRefPubMed Reiner Z, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, et al. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235:21–30.CrossRefPubMed
10.
go back to reference Burton B, Balwani M, Feillet F, Baric I, Burrow T, Camarena Grande C, et al. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N Engl J Med. 2015;373:1010–20.CrossRefPubMed Burton B, Balwani M, Feillet F, Baric I, Burrow T, Camarena Grande C, et al. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N Engl J Med. 2015;373:1010–20.CrossRefPubMed
11.
go back to reference Gomez-Najera M, Barajas-Medina H, Gallegos-Rivas MC, Mendez-Sashida P, Goss KA, Sims KB, et al. New diagnostic method for lysosomal acid lipase deficiency and the need to recognize its manifestation in infants (Wolman disease). J Pediatr Gastroenterol Nutr. 2015;60:e22–4.CrossRefPubMed Gomez-Najera M, Barajas-Medina H, Gallegos-Rivas MC, Mendez-Sashida P, Goss KA, Sims KB, et al. New diagnostic method for lysosomal acid lipase deficiency and the need to recognize its manifestation in infants (Wolman disease). J Pediatr Gastroenterol Nutr. 2015;60:e22–4.CrossRefPubMed
12.
go back to reference Krivit W, Freese D, Chan KW, Kulkarni R. Wolman’s disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant. 1992;10 Suppl 1:97–101.PubMed Krivit W, Freese D, Chan KW, Kulkarni R. Wolman’s disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow Transplant. 1992;10 Suppl 1:97–101.PubMed
13.
go back to reference Krivit W, Peters C, Dusenbery K, Ben-Yoseph Y, Ramsay NK, Wagner JE, et al. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant. 2000;26:567–70.CrossRefPubMed Krivit W, Peters C, Dusenbery K, Ben-Yoseph Y, Ramsay NK, Wagner JE, et al. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transplant. 2000;26:567–70.CrossRefPubMed
14.
go back to reference Tolar J, Petryk A, Khan K, Bjoraker KJ, Jessurun J, Dolan M, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43:21–7.CrossRefPubMed Tolar J, Petryk A, Khan K, Bjoraker KJ, Jessurun J, Dolan M, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43:21–7.CrossRefPubMed
15.
go back to reference Gramatges MM, Dvorak CC, Regula DP, Enns GM, Weinberg K, Agarwal R. Pathological evidence of Wolman’s disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant. 2009;44:449–50.CrossRefPubMed Gramatges MM, Dvorak CC, Regula DP, Enns GM, Weinberg K, Agarwal R. Pathological evidence of Wolman’s disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transplant. 2009;44:449–50.CrossRefPubMed
16.
go back to reference Yanir A, Allatif MA, Weintraub M, Stepensky P. Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab. 2013;109:24–6.CrossRef Yanir A, Allatif MA, Weintraub M, Stepensky P. Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab. 2013;109:24–6.CrossRef
17.
go back to reference Stein J, Garty BZ, Dror Y, Fenig E, Zeigler M, Yaniv I. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr. 2007;166:663–6.CrossRefPubMed Stein J, Garty BZ, Dror Y, Fenig E, Zeigler M, Yaniv I. Successful treatment of Wolman disease by unrelated umbilical cord blood transplantation. Eur J Pediatr. 2007;166:663–6.CrossRefPubMed
18.
go back to reference Balwani M, Breen C, Enns GM, Deegan PB, Honzik T, Jones S, et al. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology. 2013;58:950–7.CrossRefPubMedPubMedCentral Balwani M, Breen C, Enns GM, Deegan PB, Honzik T, Jones S, et al. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology. 2013;58:950–7.CrossRefPubMedPubMedCentral
19.
go back to reference Trial in children with growth failure due to early onset lysosomal acid lipase (LAL) deficiency/Wolman disease NCT01371825. ClinicalTrials.gov. Accessed 19 Sept 2016. Trial in children with growth failure due to early onset lysosomal acid lipase (LAL) deficiency/Wolman disease NCT01371825. ClinicalTrials.gov. Accessed 19 Sept 2016.
20.
go back to reference WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva, Switzerland: World Health Organization; 2006. WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva, Switzerland: World Health Organization; 2006.
21.
go back to reference Tracking progress on child and maternal nutrition: a survival and development priority. New York: United Nations Children’s Fund; 2009. Tracking progress on child and maternal nutrition: a survival and development priority. New York: United Nations Children’s Fund; 2009.
22.
go back to reference Frankenburg WK, Dodds J, Archer P, Bresnick B, Maschka P, Edelman N, et al. Denver II training manual. Denver Developmental Materials: Oxford, United Kingdom; 1992. Frankenburg WK, Dodds J, Archer P, Bresnick B, Maschka P, Edelman N, et al. Denver II training manual. Denver Developmental Materials: Oxford, United Kingdom; 1992.
23.
go back to reference Scott SA, Liu B, Nazarenko I, Martis S, Kozlitina J, Yang Y, et al. Frequency of the cholesteryl ester storage disease common LIPA E8SJM mutation (c.894G > A) in various racial and ethnic groups. Hepatology. 2013;58:958–65.CrossRefPubMedPubMedCentral Scott SA, Liu B, Nazarenko I, Martis S, Kozlitina J, Yang Y, et al. Frequency of the cholesteryl ester storage disease common LIPA E8SJM mutation (c.894G > A) in various racial and ethnic groups. Hepatology. 2013;58:958–65.CrossRefPubMedPubMedCentral
24.
go back to reference Lohse P, Maas S, Lohse P, Elleder M, Kirk JM, Besley GT, et al. Compound heterozygosity for a Wolman mutation is frequent among patients with cholesteryl ester storage disease. J Lipid Res. 2000;41:23–31.PubMed Lohse P, Maas S, Lohse P, Elleder M, Kirk JM, Besley GT, et al. Compound heterozygosity for a Wolman mutation is frequent among patients with cholesteryl ester storage disease. J Lipid Res. 2000;41:23–31.PubMed
25.
go back to reference Kanuma [summary of product characteristics]. Rueil-Malmaison, France: Alexion Europe, 2015. Kanuma [summary of product characteristics]. Rueil-Malmaison, France: Alexion Europe, 2015.
26.
go back to reference Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and cholesterol ester storage disease. Mol Genet Metab. 1999;68:333–45.CrossRefPubMed Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and cholesterol ester storage disease. Mol Genet Metab. 1999;68:333–45.CrossRefPubMed
27.
go back to reference Mayatepek E, Seedorf U, Wiebusch H, Lenhartz H, Assmann G. Fatal genetic defect causing Wolman disease. J Inherit Metab Dis. 1999;22:93–4.CrossRefPubMed Mayatepek E, Seedorf U, Wiebusch H, Lenhartz H, Assmann G. Fatal genetic defect causing Wolman disease. J Inherit Metab Dis. 1999;22:93–4.CrossRefPubMed
28.
go back to reference Taurisano R, Maiorana A, De Benedetti F, Dionisi-Vici C, Boldrini R, Deodato F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. Eur J Pediatr. 2014;173:1391–4.CrossRefPubMed Taurisano R, Maiorana A, De Benedetti F, Dionisi-Vici C, Boldrini R, Deodato F. Wolman disease associated with hemophagocytic lymphohistiocytosis: attempts for an explanation. Eur J Pediatr. 2014;173:1391–4.CrossRefPubMed
29.
go back to reference Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005;90:3243–50.CrossRefPubMed Perry R, Kecha O, Paquette J, Huot C, Van Vliet G, Deal C. Primary adrenal insufficiency in children: twenty years experience at the Sainte-Justine Hospital, Montreal. J Clin Endocrinol Metab. 2005;90:3243–50.CrossRefPubMed
30.
go back to reference Valayannopoulos V, Malinova V, Honzik T, Balwani M, Breen C, Deegan PB, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61:1135–42.CrossRefPubMedPubMedCentral Valayannopoulos V, Malinova V, Honzik T, Balwani M, Breen C, Deegan PB, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61:1135–42.CrossRefPubMedPubMedCentral
Metadata
Title
Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study
Authors
Simon A. Jones
Sandra Rojas-Caro
Anthony G. Quinn
Mark Friedman
Sachin Marulkar
Fatih Ezgu
Osama Zaki
J. Jay Gargus
Joanne Hughes
Dominique Plantaz
Roshni Vara
Stephen Eckert
Jean-Baptiste Arnoux
Anais Brassier
Kim-Hanh Le Quan Sang
Vassili Valayannopoulos
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2017
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-017-0587-3

Other articles of this Issue 1/2017

Orphanet Journal of Rare Diseases 1/2017 Go to the issue