Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2016

Open Access 01-12-2016 | Review

Ataxia telangiectasia: a review

Authors: Cynthia Rothblum-Oviatt, Jennifer Wright, Maureen A. Lefton-Greif, Sharon A. McGrath-Morrow, Thomas O. Crawford, Howard M. Lederman

Published in: Orphanet Journal of Rare Diseases | Issue 1/2016

Login to get access

Abstract

Definition of the disease

Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome.

Epidemiology

The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births.

Clinical description

A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations.

Etiology

A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress.

Diagnosis

The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene.

Differential diagnosis

There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing.

Antenatal diagnosis

Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis.

Genetic counseling

Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted.

Management and prognosis

Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Literature
1.
go back to reference Boder E, Sedgwick RP. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection: a preliminary report on 7 children, an autopsy, and a case history. Univ Southern Calif Med Bull. 1957;9:15–28. Boder E, Sedgwick RP. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection: a preliminary report on 7 children, an autopsy, and a case history. Univ Southern Calif Med Bull. 1957;9:15–28.
2.
go back to reference Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.PubMedCrossRef Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366(7):636–46.PubMedCrossRef
3.
go back to reference Nissenkorn A, et al. Endocrine abnormalities in ataxia telangiectasia: findings from a national cohort. Pediatr Res. 2016;79(6):889–94.PubMedCrossRef Nissenkorn A, et al. Endocrine abnormalities in ataxia telangiectasia: findings from a national cohort. Pediatr Res. 2016;79(6):889–94.PubMedCrossRef
5.
go back to reference Shiloh Y, Kastan MB. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res. 2001;83:209–54.PubMedCrossRef Shiloh Y, Kastan MB. ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res. 2001;83:209–54.PubMedCrossRef
6.
go back to reference Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.PubMedCrossRef Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.PubMedCrossRef
8.
go back to reference Sedgewick RP, Boder E. In: Vinken PJ, Bruyn GW, editors. Handbook of Clinical Neurology, vol. 14. Amsterdam: North Holland Publishing; 1972. Sedgewick RP, Boder E. In: Vinken PJ, Bruyn GW, editors. Handbook of Clinical Neurology, vol. 14. Amsterdam: North Holland Publishing; 1972.
9.
go back to reference Swift M, et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedPubMedCentral Swift M, et al. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedPubMedCentral
10.
go back to reference Boder E. Ataxia-telangiectasia: an overview. Kroc Found Ser. 1985;19:1–63.PubMed Boder E. Ataxia-telangiectasia: an overview. Kroc Found Ser. 1985;19:1–63.PubMed
11.
go back to reference Hoche F, et al. Neurodegeneration in ataxia telangiectasia: what is new? What is evident? Neuropediatrics. 2012;43(3):119–29.PubMedCrossRef Hoche F, et al. Neurodegeneration in ataxia telangiectasia: what is new? What is evident? Neuropediatrics. 2012;43(3):119–29.PubMedCrossRef
12.
go back to reference Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMed Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMed
14.
go back to reference Pearson TS. More than ataxia: hyperkinetic movement disorders in childhood autosomal recessive ataxia syndromes, vol. 6. NY: Tremor Other Hyperkinet Mov; 2016. p. 368. Pearson TS. More than ataxia: hyperkinetic movement disorders in childhood autosomal recessive ataxia syndromes, vol. 6. NY: Tremor Other Hyperkinet Mov; 2016. p. 368.
15.
go back to reference Kwast O, Ignatowicz R. Progressive peripheral neuron degeneration in ataxia-telangiectasia: an electrophysiological study in children. Dev Med Child Neurol. 1990;32(9):800–7.PubMedCrossRef Kwast O, Ignatowicz R. Progressive peripheral neuron degeneration in ataxia-telangiectasia: an electrophysiological study in children. Dev Med Child Neurol. 1990;32(9):800–7.PubMedCrossRef
16.
go back to reference Sahama I, et al. Radiological imaging in ataxia telangiectasia: a review. Cerebellum. 2014;13(4):521–30.PubMedCrossRef Sahama I, et al. Radiological imaging in ataxia telangiectasia: a review. Cerebellum. 2014;13(4):521–30.PubMedCrossRef
17.
go back to reference Lin DD, et al. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol. 2014;35(1):119–23.PubMedCrossRef Lin DD, et al. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol. 2014;35(1):119–23.PubMedCrossRef
18.
go back to reference Sahama I, et al. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients. Mov Disord. 2014;29(10):1289–98.PubMedCrossRef Sahama I, et al. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients. Mov Disord. 2014;29(10):1289–98.PubMedCrossRef
19.
20.
go back to reference Lin DD, et al. Proton MR spectroscopic imaging in ataxia-telangiectasia. Neuropediatrics. 2006;37(4):241–6.PubMedCrossRef Lin DD, et al. Proton MR spectroscopic imaging in ataxia-telangiectasia. Neuropediatrics. 2006;37(4):241–6.PubMedCrossRef
21.
go back to reference Wallis LI, et al. Proton spectroscopy and imaging at 3 T in ataxia-telangiectasia. AJNR Am J Neuroradiol. 2007;28(1):79–83.PubMed Wallis LI, et al. Proton spectroscopy and imaging at 3 T in ataxia-telangiectasia. AJNR Am J Neuroradiol. 2007;28(1):79–83.PubMed
22.
23.
go back to reference Cabana MD, et al. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics. 1998;102(1 Pt 1):98–100.PubMedCrossRef Cabana MD, et al. Consequences of the delayed diagnosis of ataxia-telangiectasia. Pediatrics. 1998;102(1 Pt 1):98–100.PubMedCrossRef
24.
go back to reference Farr AK, et al. Ocular manifestations of ataxia-telangiectasia. Am J Ophthalmol. 2002;134(6):891–6.PubMedCrossRef Farr AK, et al. Ocular manifestations of ataxia-telangiectasia. Am J Ophthalmol. 2002;134(6):891–6.PubMedCrossRef
25.
go back to reference Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.PubMedCrossRef Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.PubMedCrossRef
26.
go back to reference Shaikh AG, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.PubMedCrossRef Shaikh AG, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.PubMedCrossRef
27.
go back to reference Shaikh AG, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.PubMedCrossRef Shaikh AG, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.PubMedCrossRef
28.
go back to reference Nowak-Wegrzyn A, et al. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144(4):505–11.PubMedCrossRef Nowak-Wegrzyn A, et al. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144(4):505–11.PubMedCrossRef
29.
go back to reference Driessen GJ, et al. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol. 2013;131(5):1367–75. e9.PubMedCrossRef Driessen GJ, et al. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol. 2013;131(5):1367–75. e9.PubMedCrossRef
30.
go back to reference Kraus M, et al. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol. 2014;34(5):561–72.PubMedCrossRef Kraus M, et al. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol. 2014;34(5):561–72.PubMedCrossRef
31.
go back to reference Noordzij JG, et al. Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child. 2009;94(6):448–9.PubMedCrossRef Noordzij JG, et al. Ataxia-telangiectasia patients presenting with hyper-IgM syndrome. Arch Dis Child. 2009;94(6):448–9.PubMedCrossRef
33.
go back to reference Lockman JL, et al. The critically ill patient with ataxia-telangiectasia: a case series*. Pediatr Crit Care Med. 2012;13(2):e84–90.PubMedCrossRef Lockman JL, et al. The critically ill patient with ataxia-telangiectasia: a case series*. Pediatr Crit Care Med. 2012;13(2):e84–90.PubMedCrossRef
34.
go back to reference Schroeder SA, Zielen S. Infections of the respiratory system in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2014;49(4):389–99.PubMedCrossRef Schroeder SA, Zielen S. Infections of the respiratory system in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2014;49(4):389–99.PubMedCrossRef
35.
go back to reference Paller AS, et al. Cutaneous granulomatous lesions in patients with ataxia-telangiectasia. J Pediatr. 1991;119(6):917–22.PubMedCrossRef Paller AS, et al. Cutaneous granulomatous lesions in patients with ataxia-telangiectasia. J Pediatr. 1991;119(6):917–22.PubMedCrossRef
36.
go back to reference Chiam LY, et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatology. 2011;223(1):13–9.PubMedCrossRef Chiam LY, et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatology. 2011;223(1):13–9.PubMedCrossRef
38.
go back to reference Bhatt JM, et al. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev. 2015;24(138):565–81.PubMedCrossRef Bhatt JM, et al. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev. 2015;24(138):565–81.PubMedCrossRef
39.
go back to reference McGrath-Morrow S, et al. Pulmonary function in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43(1):59–66.PubMedCrossRef McGrath-Morrow S, et al. Pulmonary function in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43(1):59–66.PubMedCrossRef
40.
go back to reference McGrath-Morrow SA, et al. Pulmonary function in children and young adults with ataxia telangiectasia. Pediatr Pulmonol. 2014;49(1):84–90.PubMedCrossRef McGrath-Morrow SA, et al. Pulmonary function in children and young adults with ataxia telangiectasia. Pediatr Pulmonol. 2014;49(1):84–90.PubMedCrossRef
41.
go back to reference Lockman JL, et al. Anesthetic and perioperative risk in the patient with Ataxia-Telangiectasia. Paediatr Anaesth. 2012;22(3):256–62.PubMedCrossRef Lockman JL, et al. Anesthetic and perioperative risk in the patient with Ataxia-Telangiectasia. Paediatr Anaesth. 2012;22(3):256–62.PubMedCrossRef
42.
go back to reference Schroeder SA, et al. Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2005;39(6):537–43.PubMedCrossRef Schroeder SA, et al. Interstitial lung disease in patients with ataxia-telangiectasia. Pediatr Pulmonol. 2005;39(6):537–43.PubMedCrossRef
43.
44.
go back to reference Chen RL, et al. Severe lung fibrosis after chemotherapy in a child with ataxia-telangiectasia. J Pediatr Hematol Oncol. 2002;24(1):77–9.PubMedCrossRef Chen RL, et al. Severe lung fibrosis after chemotherapy in a child with ataxia-telangiectasia. J Pediatr Hematol Oncol. 2002;24(1):77–9.PubMedCrossRef
45.
go back to reference McGrath-Morrow SA, et al. Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr. 2010;156(4):682–4. e1.PubMedCrossRef McGrath-Morrow SA, et al. Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr. 2010;156(4):682–4. e1.PubMedCrossRef
46.
go back to reference McGrath-Morrow SA, et al. Serum interleukin-6 levels and pulmonary function in ataxia-telangiectasia. J Pediatr. 2016;171:256–261.e1.PubMedCrossRef McGrath-Morrow SA, et al. Serum interleukin-6 levels and pulmonary function in ataxia-telangiectasia. J Pediatr. 2016;171:256–261.e1.PubMedCrossRef
47.
go back to reference Reiman A, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer. 2011;105(4):586–91.PubMedPubMedCentralCrossRef Reiman A, et al. Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual ATM kinase activity against childhood tumours. Br J Cancer. 2011;105(4):586–91.PubMedPubMedCentralCrossRef
48.
go back to reference Suarez F, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202–8.PubMedCrossRef Suarez F, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202–8.PubMedCrossRef
49.
go back to reference van Os NJ, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17.PubMedCrossRef van Os NJ, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17.PubMedCrossRef
50.
go back to reference Hollestelle A, et al. Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev. 2010;20(3):268–76.PubMedCrossRef Hollestelle A, et al. Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev. 2010;20(3):268–76.PubMedCrossRef
51.
go back to reference Economopoulou P, G. Dimitriadis, A. Psyrri. Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015. 41(1):1-8. Economopoulou P, G. Dimitriadis, A. Psyrri. Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015. 41(1):1-8.
52.
go back to reference Thompson D, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.PubMedCrossRef Thompson D, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.PubMedCrossRef
53.
go back to reference Renwick A, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.PubMedCrossRef Renwick A, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.PubMedCrossRef
54.
go back to reference Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: A meta-analysis of different measures of risk. Genet Epidemiol. 2016;40(5):425–31.PubMedCrossRef Marabelli M, Cheng SC, Parmigiani G. Penetrance of ATM gene mutations in breast cancer: A meta-analysis of different measures of risk. Genet Epidemiol. 2016;40(5):425–31.PubMedCrossRef
55.
go back to reference Hart RM, et al. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int J Radiat Oncol Biol Phys. 1987;13(8):1237–40.PubMedCrossRef Hart RM, et al. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int J Radiat Oncol Biol Phys. 1987;13(8):1237–40.PubMedCrossRef
56.
go back to reference DeWire MD, et al. Radiation therapy and adjuvant chemotherapy in a patient with a malignant glioneuronal tumor and underlying ataxia telangiectasia: a case report and review of the literature. J Clin Oncol. 2013;31(1):e12–4.PubMedCrossRef DeWire MD, et al. Radiation therapy and adjuvant chemotherapy in a patient with a malignant glioneuronal tumor and underlying ataxia telangiectasia: a case report and review of the literature. J Clin Oncol. 2013;31(1):e12–4.PubMedCrossRef
57.
go back to reference Hannan MA, et al. Deficiency in the repair of UV-induced DNA damage in human skin fibroblasts compromised for the ATM gene. Carcinogenesis. 2002;23(10):1617–24.PubMedCrossRef Hannan MA, et al. Deficiency in the repair of UV-induced DNA damage in human skin fibroblasts compromised for the ATM gene. Carcinogenesis. 2002;23(10):1617–24.PubMedCrossRef
58.
go back to reference Shiloh Y. ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res. 2014;329(1):154–61.PubMedCrossRef Shiloh Y. ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res. 2014;329(1):154–61.PubMedCrossRef
59.
go back to reference Kiuru A, et al. Assessment of targeted and non-targeted responses in cells deficient in ATM function following exposure to low and high dose X-rays. PLoS One. 2014;9(3):e93211.PubMedPubMedCentralCrossRef Kiuru A, et al. Assessment of targeted and non-targeted responses in cells deficient in ATM function following exposure to low and high dose X-rays. PLoS One. 2014;9(3):e93211.PubMedPubMedCentralCrossRef
60.
go back to reference Gutierrez-Enriquez S, et al. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer. 2004;40(2):109–19.PubMedCrossRef Gutierrez-Enriquez S, et al. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosomes Cancer. 2004;40(2):109–19.PubMedCrossRef
61.
go back to reference Shiloh Y, et al. G2 chromosomal radiosensitivity in families with ataxia-telangiectasia. Hum Genet. 1989;84(1):15–8.PubMedCrossRef Shiloh Y, et al. G2 chromosomal radiosensitivity in families with ataxia-telangiectasia. Hum Genet. 1989;84(1):15–8.PubMedCrossRef
62.
go back to reference Weissberg JB, Huang DD, Swift M. Radiosensitivity of normal tissues in ataxia-telangiectasia heterozygotes. Int J Radiat Oncol Biol Phys. 1998;42(5):1133–6.PubMedCrossRef Weissberg JB, Huang DD, Swift M. Radiosensitivity of normal tissues in ataxia-telangiectasia heterozygotes. Int J Radiat Oncol Biol Phys. 1998;42(5):1133–6.PubMedCrossRef
63.
go back to reference Bernstein JL, et al. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst. 2010;102(7):475–83.PubMedPubMedCentralCrossRef Bernstein JL, et al. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst. 2010;102(7):475–83.PubMedPubMedCentralCrossRef
64.
go back to reference Lefton-Greif MA, et al. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000;136(2):225–31.PubMedCrossRef Lefton-Greif MA, et al. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000;136(2):225–31.PubMedCrossRef
65.
go back to reference Boder E, Sedgwick R. Ataxia telangiectasia: a review of 101 cases, in little club clinics in developmental medicine No. 8. London: Heinemann Books; 1963. p. 110–8. Boder E, Sedgwick R. Ataxia telangiectasia: a review of 101 cases, in little club clinics in developmental medicine No. 8. London: Heinemann Books; 1963. p. 110–8.
66.
go back to reference Woods CG, Taylor AM. Ataxia telangiectasia in the British isles: the clinical and laboratory features of 70 affected individuals. Q J Med. 1992;82(298):169–79.PubMed Woods CG, Taylor AM. Ataxia telangiectasia in the British isles: the clinical and laboratory features of 70 affected individuals. Q J Med. 1992;82(298):169–79.PubMed
67.
go back to reference Moin M, et al. Ataxia-Telangiectasia in Iran: Clinical and Laboratory Features of 104 Patients. Pediatr Neurol. 2007;37(1):21–8.PubMedCrossRef Moin M, et al. Ataxia-Telangiectasia in Iran: Clinical and Laboratory Features of 104 Patients. Pediatr Neurol. 2007;37(1):21–8.PubMedCrossRef
68.
69.
go back to reference Kieslich M, et al. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum. 2010;9(2):190–7.PubMedCrossRef Kieslich M, et al. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum. 2010;9(2):190–7.PubMedCrossRef
70.
go back to reference Lefton-Greif MA, et al. Assessment of impaired coordination between respiration and deglutition in children and young adults with ataxia telangiectasia. Dev Med Child Neurol. 2016;58(10):1069–75.PubMedCrossRef Lefton-Greif MA, et al. Assessment of impaired coordination between respiration and deglutition in children and young adults with ataxia telangiectasia. Dev Med Child Neurol. 2016;58(10):1069–75.PubMedCrossRef
71.
go back to reference Voss S, et al. Growth retardation and growth hormone deficiency in patients with Ataxia telangiectasia. Growth Factors. 2014;32(3–4):123–9.PubMedCrossRef Voss S, et al. Growth retardation and growth hormone deficiency in patients with Ataxia telangiectasia. Growth Factors. 2014;32(3–4):123–9.PubMedCrossRef
72.
go back to reference Ehlayel M, Soliman A, De Sanctis V. Linear growth and endocrine function in children with ataxia telangiectasia. Indian J Endocrinol Metab. 2014;18 Suppl 1:S93–6.PubMedPubMedCentral Ehlayel M, Soliman A, De Sanctis V. Linear growth and endocrine function in children with ataxia telangiectasia. Indian J Endocrinol Metab. 2014;18 Suppl 1:S93–6.PubMedPubMedCentral
73.
go back to reference Barlow C, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86(1):159–71.PubMedCrossRef Barlow C, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996;86(1):159–71.PubMedCrossRef
75.
go back to reference Xu Y, et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 1996;10(19):2411–22.PubMedCrossRef Xu Y, et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 1996;10(19):2411–22.PubMedCrossRef
76.
go back to reference Herzog KH, et al. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science. 1998;280(5366):1089–91.PubMedCrossRef Herzog KH, et al. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science. 1998;280(5366):1089–91.PubMedCrossRef
77.
go back to reference Worth PF, et al. Very mild presentation in adult with classical cellular phenotype of ataxia telangiectasia. Mov Disord. 2013;28(4):524–8.PubMedCrossRef Worth PF, et al. Very mild presentation in adult with classical cellular phenotype of ataxia telangiectasia. Mov Disord. 2013;28(4):524–8.PubMedCrossRef
78.
go back to reference Connelly PJ, et al. Recessive mutations in the cancer gene Ataxia Telangiectasia mutated (ATM), at a locus previously associated with metformin response, cause dysglycaemia and insulin resistance. Diabet Med. 2016;33(3):371–5.PubMedCrossRef Connelly PJ, et al. Recessive mutations in the cancer gene Ataxia Telangiectasia mutated (ATM), at a locus previously associated with metformin response, cause dysglycaemia and insulin resistance. Diabet Med. 2016;33(3):371–5.PubMedCrossRef
79.
go back to reference McGrath-Morrow SA, et al. Polysomnographic values in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43(7):674–9.PubMedCrossRef McGrath-Morrow SA, et al. Polysomnographic values in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43(7):674–9.PubMedCrossRef
80.
go back to reference Mostofsky SH, et al. Judgment of duration in individuals with ataxia-telangiectasia. Dev Neuropsychol. 2000;17(1):63–74.PubMedCrossRef Mostofsky SH, et al. Judgment of duration in individuals with ataxia-telangiectasia. Dev Neuropsychol. 2000;17(1):63–74.PubMedCrossRef
81.
go back to reference Vinck A, et al. Cognitive and speech-language performance in children with ataxia telangiectasia. Dev Neurorehabil. 2011;14(5):315–22.PubMedCrossRef Vinck A, et al. Cognitive and speech-language performance in children with ataxia telangiectasia. Dev Neurorehabil. 2011;14(5):315–22.PubMedCrossRef
82.
go back to reference Hoche F, et al. Cognitive phenotype in ataxia-telangiectasia. Pediatr Neurol. 2014;51(3):297–310.PubMedCrossRef Hoche F, et al. Cognitive phenotype in ataxia-telangiectasia. Pediatr Neurol. 2014;51(3):297–310.PubMedCrossRef
83.
go back to reference Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRef
84.
go back to reference Hoche F, et al. The cerebellar cognitive affective syndrome (CCAS) in children with ataxia telangiectasia (A-T). Orlando: Ataxia Investigators Meeting, National Ataxia Foundation; 2016. Hoche F, et al. The cerebellar cognitive affective syndrome (CCAS) in children with ataxia telangiectasia (A-T). Orlando: Ataxia Investigators Meeting, National Ataxia Foundation; 2016.
85.
go back to reference Gatti R, Perlman S, et al. Ataxia-telangiectasia. In: Pagon RA, Pagon RA, editors. GeneReviews(R). Seattle: University of Washington; 1993. Gatti R, Perlman S, et al. Ataxia-telangiectasia. In: Pagon RA, Pagon RA, editors. GeneReviews(R). Seattle: University of Washington; 1993.
86.
go back to reference Weiss B, et al. Liver disease in pediatric patients with ataxia telangiectasia: a novel report. J Pediatr Gastroenterol Nutr. 2016;62(4):550–5.PubMedCrossRef Weiss B, et al. Liver disease in pediatric patients with ataxia telangiectasia: a novel report. J Pediatr Gastroenterol Nutr. 2016;62(4):550–5.PubMedCrossRef
87.
go back to reference Andrade IG, et al. Risk of atherosclerosis in patients with ataxia telangiectasia. Ann Nutr Metab. 2015;66(4):196–201.PubMedCrossRef Andrade IG, et al. Risk of atherosclerosis in patients with ataxia telangiectasia. Ann Nutr Metab. 2015;66(4):196–201.PubMedCrossRef
89.
go back to reference Savitsky K, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.PubMedCrossRef Savitsky K, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.PubMedCrossRef
90.
go back to reference Gatti RA, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577–80.PubMedCrossRef Gatti RA, et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22-23. Nature. 1988;336(6199):577–80.PubMedCrossRef
91.
go back to reference Gilad S, et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum Mol Genet. 1996;5(12):2033–7.PubMedCrossRef Gilad S, et al. Ataxia-telangiectasia: founder effect among north African Jews. Hum Mol Genet. 1996;5(12):2033–7.PubMedCrossRef
92.
go back to reference Telatar M, et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet. 1998;62(1):86–97.PubMedPubMedCentralCrossRef Telatar M, et al. Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet. 1998;62(1):86–97.PubMedPubMedCentralCrossRef
93.
go back to reference Hassin-Baer S, et al. Absence of mutations in ATM, the gene responsible for ataxia telangiectasia in patients with cerebellar ataxia. J Neurol. 1999;246(8):716–9.PubMedCrossRef Hassin-Baer S, et al. Absence of mutations in ATM, the gene responsible for ataxia telangiectasia in patients with cerebellar ataxia. J Neurol. 1999;246(8):716–9.PubMedCrossRef
95.
go back to reference Verhagen MM, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat. 2012;33(3):561–71.PubMedCrossRef Verhagen MM, et al. Presence of ATM protein and residual kinase activity correlates with the phenotype in ataxia-telangiectasia: a genotype-phenotype study. Hum Mutat. 2012;33(3):561–71.PubMedCrossRef
96.
go back to reference Micol R, et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol. 2011;128(2):382–9. e1.PubMedCrossRef Micol R, et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol. 2011;128(2):382–9. e1.PubMedCrossRef
97.
go back to reference Taylor AM, et al. Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet. 2015;87(3):199–208.PubMedCrossRef Taylor AM, et al. Ataxia telangiectasia: more variation at clinical and cellular levels. Clin Genet. 2015;87(3):199–208.PubMedCrossRef
98.
go back to reference Sandoval N, et al. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet. 1999;8(1):69–79.PubMedCrossRef Sandoval N, et al. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet. 1999;8(1):69–79.PubMedCrossRef
99.
go back to reference Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet. 2000;92(3):170–7.PubMedCrossRef Li A, Swift M. Mutations at the ataxia-telangiectasia locus and clinical phenotypes of A-T patients. Am J Med Genet. 2000;92(3):170–7.PubMedCrossRef
100.
go back to reference Bielorai B, et al. Acute lymphoblastic leukemia in early childhood as the presenting sign of ataxia-telangiectasia variant. Pediatr Hematol Oncol. 2013;30(6):574–82.PubMedCrossRef Bielorai B, et al. Acute lymphoblastic leukemia in early childhood as the presenting sign of ataxia-telangiectasia variant. Pediatr Hematol Oncol. 2013;30(6):574–82.PubMedCrossRef
101.
go back to reference Yanofsky RA, et al. Ataxia-telangiectasia: atypical presentation and toxicity of cancer treatment. Can J Neurol Sci. 2009;36(4):462–7.PubMedCrossRef Yanofsky RA, et al. Ataxia-telangiectasia: atypical presentation and toxicity of cancer treatment. Can J Neurol Sci. 2009;36(4):462–7.PubMedCrossRef
102.
go back to reference Saviozzi S, et al. A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. J Med Genet. 2002;39(1):57–61.PubMedPubMedCentralCrossRef Saviozzi S, et al. A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. J Med Genet. 2002;39(1):57–61.PubMedPubMedCentralCrossRef
103.
go back to reference Sutton IJ, et al. Adult-onset ataxia telangiectasia due to ATM 5762ins137 mutation homozygosity. Ann Neurol. 2004;55(6):891–5.PubMedCrossRef Sutton IJ, et al. Adult-onset ataxia telangiectasia due to ATM 5762ins137 mutation homozygosity. Ann Neurol. 2004;55(6):891–5.PubMedCrossRef
104.
go back to reference Gazulla J, Benavente I, Sarasa Barrio M. Adult-onset ataxia-telangiectasia. A clinical and therapeutic observation. Neurologia. 2006;21(8):447–51.PubMed Gazulla J, Benavente I, Sarasa Barrio M. Adult-onset ataxia-telangiectasia. A clinical and therapeutic observation. Neurologia. 2006;21(8):447–51.PubMed
105.
go back to reference Hiel JA, et al. Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia. Neurology. 2006;67(2):346–9.PubMedCrossRef Hiel JA, et al. Distal spinal muscular atrophy as a major feature in adult-onset ataxia telangiectasia. Neurology. 2006;67(2):346–9.PubMedCrossRef
106.
go back to reference Alterman N, et al. Ataxia-telangiectasia: mild neurological presentation despite null ATM mutation and severe cellular phenotype. Am J Med Genet A. 2007;143(16):1827–34.CrossRef Alterman N, et al. Ataxia-telangiectasia: mild neurological presentation despite null ATM mutation and severe cellular phenotype. Am J Med Genet A. 2007;143(16):1827–34.CrossRef
107.
go back to reference Chessa L, et al. Heterogeneity in ataxia-telangiectasia: classical phenotype associated with intermediate cellular radiosensitivity. Am J Med Genet. 1992;42(5):741–6.PubMedCrossRef Chessa L, et al. Heterogeneity in ataxia-telangiectasia: classical phenotype associated with intermediate cellular radiosensitivity. Am J Med Genet. 1992;42(5):741–6.PubMedCrossRef
108.
go back to reference Paz A, et al. SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Res. 2011;39(Database issue):D793–9.PubMedCrossRef Paz A, et al. SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Res. 2011;39(Database issue):D793–9.PubMedCrossRef
109.
go back to reference Matsuoka S, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.PubMedCrossRef Matsuoka S, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160–6.PubMedCrossRef
110.
go back to reference Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.CrossRef Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14(4):197–210.CrossRef
111.
go back to reference Bredemeyer AL, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006;442(7101):466–70.PubMedCrossRef Bredemeyer AL, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006;442(7101):466–70.PubMedCrossRef
112.
go back to reference Bredemeyer AL, et al. Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Immunol. 2008;181(4):2620–5.PubMedPubMedCentralCrossRef Bredemeyer AL, et al. Aberrant V(D)J recombination in ataxia telangiectasia mutated-deficient lymphocytes is dependent on nonhomologous DNA end joining. J Immunol. 2008;181(4):2620–5.PubMedPubMedCentralCrossRef
113.
114.
115.
116.
go back to reference Schubert R, et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet. 2004;13(16):1793–802.PubMedCrossRef Schubert R, et al. Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Hum Mol Genet. 2004;13(16):1793–802.PubMedCrossRef
117.
go back to reference Reliene R, Schiestl RH. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair (Amst). 2006;5(7):852–9.CrossRef Reliene R, Schiestl RH. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair (Amst). 2006;5(7):852–9.CrossRef
118.
go back to reference Gueven N, et al. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free Radic Biol Med. 2006;41(6):992–1000.PubMedCrossRef Gueven N, et al. Dramatic extension of tumor latency and correction of neurobehavioral phenotype in Atm-mutant mice with a nitroxide antioxidant. Free Radic Biol Med. 2006;41(6):992–1000.PubMedCrossRef
119.
go back to reference Gilmore EC. DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics. 2014;15(4):217–28.PubMedCrossRef Gilmore EC. DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics. 2014;15(4):217–28.PubMedCrossRef
121.
go back to reference Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst). 2008;7(7):1010–27.CrossRef Barzilai A, Biton S, Shiloh Y. The role of the DNA damage response in neuronal development, organization and maintenance. DNA Repair (Amst). 2008;7(7):1010–27.CrossRef
122.
go back to reference Vinters HV, Gatti RA, Rakic P. Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia. Kroc Found Ser. 1985;19:233–55.PubMed Vinters HV, Gatti RA, Rakic P. Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia. Kroc Found Ser. 1985;19:233–55.PubMed
123.
go back to reference Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser. 1985;19:225–32.PubMed Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser. 1985;19:225–32.PubMed
124.
125.
126.
128.
go back to reference Shiloh Y, Tabor E, Becker Y. Colony-forming ability of ataxia-telangiectasia skin fibroblasts is an indicator of their early senescence and increased demand for growth factors. Exp Cell Res. 1982;140(1):191–9.PubMedCrossRef Shiloh Y, Tabor E, Becker Y. Colony-forming ability of ataxia-telangiectasia skin fibroblasts is an indicator of their early senescence and increased demand for growth factors. Exp Cell Res. 1982;140(1):191–9.PubMedCrossRef
129.
go back to reference Metcalfe JA, et al. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet. 1996;13(3):350–3.PubMedCrossRef Metcalfe JA, et al. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet. 1996;13(3):350–3.PubMedCrossRef
130.
go back to reference Gatei M, et al. Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by alpha-lipoic acid. Oncogene. 2001;20(3):289–94.PubMedCrossRef Gatei M, et al. Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by alpha-lipoic acid. Oncogene. 2001;20(3):289–94.PubMedCrossRef
131.
go back to reference Inomata K, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6):1088–99.PubMedCrossRef Inomata K, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6):1088–99.PubMedCrossRef
133.
go back to reference Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2(12):893–8.PubMedCrossRef Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2(12):893–8.PubMedCrossRef
134.
go back to reference Yang DQ, et al. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today. 2011;16(7–8):332–8.PubMedCrossRef Yang DQ, et al. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today. 2011;16(7–8):332–8.PubMedCrossRef
135.
go back to reference Ditch S, Paull TT. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci. 2012;37(1):15–22.PubMedCrossRef Ditch S, Paull TT. The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci. 2012;37(1):15–22.PubMedCrossRef
136.
go back to reference Schneider JG, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4(5):377–89.PubMedCrossRef Schneider JG, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4(5):377–89.PubMedCrossRef
137.
go back to reference Stray-Pedersen A, et al. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur J Paediatr Neurol. 2007;11(6):375–80.PubMedCrossRef Stray-Pedersen A, et al. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur J Paediatr Neurol. 2007;11(6):375–80.PubMedCrossRef
138.
go back to reference Chun HH, et al. Improved diagnostic testing for ataxia-telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol Genet Metab. 2003;80(4):437–43.PubMedCrossRef Chun HH, et al. Improved diagnostic testing for ataxia-telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol Genet Metab. 2003;80(4):437–43.PubMedCrossRef
140.
go back to reference Bower, M., Diagnostic Yield of a Targeted Next Generation Sequencing Approach in a Young Adult Population: High Frequency of Recessive Ataxias and Implentation of a Next Generation Sequencing Copy-Number Variation Algorithm. 5th Ataxia Investigators Meeting (AIM 2014), Las Vegas, NV, March 18–21, 2014 Bower, M., Diagnostic Yield of a Targeted Next Generation Sequencing Approach in a Young Adult Population: High Frequency of Recessive Ataxias and Implentation of a Next Generation Sequencing Copy-Number Variation Algorithm. 5th Ataxia Investigators Meeting (AIM 2014), Las Vegas, NV, March 18–21, 2014
141.
go back to reference Herskind A, Greisen G, Nielsen JB. Early identification and intervention in cerebral palsy. Dev Med Child Neurol. 2015;57(1):29–36.PubMedCrossRef Herskind A, Greisen G, Nielsen JB. Early identification and intervention in cerebral palsy. Dev Med Child Neurol. 2015;57(1):29–36.PubMedCrossRef
142.
go back to reference Salman MS, Ikeda KM. The syndrome of infantile-onset saccade initiation delay. Can J Neurol Sci. 2013;40(2):235–40.PubMedCrossRef Salman MS, Ikeda KM. The syndrome of infantile-onset saccade initiation delay. Can J Neurol Sci. 2013;40(2):235–40.PubMedCrossRef
143.
go back to reference Hellani A, et al. Pregnancy after preimplantation genetic diagnosis for ataxia telangiectasia. Mol Hum Reprod. 2002;8(8):785–8.PubMedCrossRef Hellani A, et al. Pregnancy after preimplantation genetic diagnosis for ataxia telangiectasia. Mol Hum Reprod. 2002;8(8):785–8.PubMedCrossRef
144.
go back to reference Verlinsky Y, et al. Preimplantation diagnosis for immunodeficiencies. Reprod Biomed Online. 2007;14(2):214–23.PubMedCrossRef Verlinsky Y, et al. Preimplantation diagnosis for immunodeficiencies. Reprod Biomed Online. 2007;14(2):214–23.PubMedCrossRef
145.
go back to reference Borte S, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119(11):2552–5.PubMedCrossRef Borte S, et al. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood. 2012;119(11):2552–5.PubMedCrossRef
146.
go back to reference Mallott J, et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J Clin Immunol. 2013;33(3):540–9.PubMedCrossRef Mallott J, et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J Clin Immunol. 2013;33(3):540–9.PubMedCrossRef
147.
go back to reference Lavin MF, et al. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull. 2007;81–82:129–47.PubMedCrossRef Lavin MF, et al. Current and potential therapeutic strategies for the treatment of ataxia-telangiectasia. Br Med Bull. 2007;81–82:129–47.PubMedCrossRef
148.
go back to reference Nissenkorn A, et al. Movement disorder in ataxia-telangiectasia: treatment with amantadine sulfate. J Child Neurol. 2013;28(2):155–60.PubMedCrossRef Nissenkorn A, et al. Movement disorder in ataxia-telangiectasia: treatment with amantadine sulfate. J Child Neurol. 2013;28(2):155–60.PubMedCrossRef
149.
go back to reference van Egmond ME, et al. Myoclonus in childhood-onset neurogenetic disorders: The importance of early identification and treatment. Eur J Paediatr Neurol. 2015;19(6):726–9.PubMedCrossRef van Egmond ME, et al. Myoclonus in childhood-onset neurogenetic disorders: The importance of early identification and treatment. Eur J Paediatr Neurol. 2015;19(6):726–9.PubMedCrossRef
150.
go back to reference Romano S, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(10):985–91.PubMedCrossRef Romano S, et al. Riluzole in patients with hereditary cerebellar ataxia: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(10):985–91.PubMedCrossRef
151.
go back to reference Sadighi Akha AA, et al. Oligo-/monoclonal gammopathy and hypergammaglobulinemia in ataxia-telangiectasia. A study of 90 patients. Medicine (Baltimore). 1999;78(6):370–81.CrossRef Sadighi Akha AA, et al. Oligo-/monoclonal gammopathy and hypergammaglobulinemia in ataxia-telangiectasia. A study of 90 patients. Medicine (Baltimore). 1999;78(6):370–81.CrossRef
152.
go back to reference Privette ED, et al. Healing of granulomatous skin changes in ataxia-telangiectasia after treatment with intravenous immunoglobulin and topical mometasone 0.1% ointment. Pediatr Dermatol. 2014;31(6):703–7.PubMedCrossRef Privette ED, et al. Healing of granulomatous skin changes in ataxia-telangiectasia after treatment with intravenous immunoglobulin and topical mometasone 0.1% ointment. Pediatr Dermatol. 2014;31(6):703–7.PubMedCrossRef
153.
go back to reference Mitra A, et al. Infliximab in the treatment of a child with cutaneous granulomas associated with ataxia telangiectasia. J Am Acad Dermatol. 2011;65(3):676–7.PubMedCrossRef Mitra A, et al. Infliximab in the treatment of a child with cutaneous granulomas associated with ataxia telangiectasia. J Am Acad Dermatol. 2011;65(3):676–7.PubMedCrossRef
154.
go back to reference Pinzon-Charry A, Kimble R, Peake J. Intralesional steroids for the treatment of cutaneous granulomas in ataxia telangiectasia [abstract]. Intern Med J. 2013;43(Suppl S4):25. Pinzon-Charry A, Kimble R, Peake J. Intralesional steroids for the treatment of cutaneous granulomas in ataxia telangiectasia [abstract]. Intern Med J. 2013;43(Suppl S4):25.
155.
go back to reference Montella S, et al. Non invasive assessment of lung disease in ataxia telangiectasia by high-field magnetic resonance imaging. J Clin Immunol. 2013;33(7):1185–91.PubMedCrossRef Montella S, et al. Non invasive assessment of lung disease in ataxia telangiectasia by high-field magnetic resonance imaging. J Clin Immunol. 2013;33(7):1185–91.PubMedCrossRef
156.
go back to reference O’Donnell AE. Bronchiectasis: which antibiotics to use and when? Curr Opin Pulm Med. 2015;21(3):272–7.PubMedCrossRef O’Donnell AE. Bronchiectasis: which antibiotics to use and when? Curr Opin Pulm Med. 2015;21(3):272–7.PubMedCrossRef
157.
go back to reference Magis-Escurra C, MH Reijers. Bronchiectasis. BMJ Clin Evid. 2015;25(2015). Magis-Escurra C, MH Reijers. Bronchiectasis. BMJ Clin Evid. 2015;25(2015).
158.
go back to reference Berkun Y, et al. Reversible airway obstruction in children with ataxia telangiectasia. Pediatr Pulmonol. 2010;45(3):230–5.PubMed Berkun Y, et al. Reversible airway obstruction in children with ataxia telangiectasia. Pediatr Pulmonol. 2010;45(3):230–5.PubMed
159.
go back to reference Miske LJ, et al. Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest. 2004;125(4):1406–12.PubMedCrossRef Miske LJ, et al. Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest. 2004;125(4):1406–12.PubMedCrossRef
160.
go back to reference Felix E, Gimenes AC, Costa-Carvalho BT. Effects of inspiratory muscle training on lung volumes, respiratory muscle strength, and quality of life in patients with ataxia telangiectasia. Pediatr Pulmonol. 2014;49(3):238–44.PubMedCrossRef Felix E, Gimenes AC, Costa-Carvalho BT. Effects of inspiratory muscle training on lung volumes, respiratory muscle strength, and quality of life in patients with ataxia telangiectasia. Pediatr Pulmonol. 2014;49(3):238–44.PubMedCrossRef
161.
162.
go back to reference Pommerening H, et al. Body composition, muscle strength and hormonal status in patients with ataxia telangiectasia: a cohort study. Orphanet J Rare Dis. 2015;10:155.PubMedPubMedCentralCrossRef Pommerening H, et al. Body composition, muscle strength and hormonal status in patients with ataxia telangiectasia: a cohort study. Orphanet J Rare Dis. 2015;10:155.PubMedPubMedCentralCrossRef
163.
go back to reference Ross LJ, et al. Nutritional status of patients with ataxia-telangiectasia: a case for early and ongoing nutrition support and intervention. J Paediatr Child Health. 2015;51(8):802–7.PubMedCrossRef Ross LJ, et al. Nutritional status of patients with ataxia-telangiectasia: a case for early and ongoing nutrition support and intervention. J Paediatr Child Health. 2015;51(8):802–7.PubMedCrossRef
165.
go back to reference Sandlund JT, et al. Pilot study of modified LMB-based therapy for children with ataxia-telangiectasia and advanced stage high grade mature B-cell malignancies. Pediatr Blood Cancer. 2014;61(2):360–2.PubMedCrossRef Sandlund JT, et al. Pilot study of modified LMB-based therapy for children with ataxia-telangiectasia and advanced stage high grade mature B-cell malignancies. Pediatr Blood Cancer. 2014;61(2):360–2.PubMedCrossRef
166.
go back to reference Ussowicz M, et al. Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. Bone Marrow Transplant. 2013;48(5):740–1.PubMedCrossRef Ussowicz M, et al. Long-term survival after allogeneic-matched sibling PBSC transplantation with conditioning consisting of low-dose busilvex and fludarabine in a 3-year-old boy with ataxia-telangiectasia syndrome and ALL. Bone Marrow Transplant. 2013;48(5):740–1.PubMedCrossRef
167.
go back to reference Beier R, et al. Allogeneic-matched sibling stem cell transplantation in a 13-year-old boy with ataxia telangiectasia and EBV-positive non-Hodgkin lymphoma. Bone Marrow Transplant. 2016;51(9):1271–4.PubMedCrossRef Beier R, et al. Allogeneic-matched sibling stem cell transplantation in a 13-year-old boy with ataxia telangiectasia and EBV-positive non-Hodgkin lymphoma. Bone Marrow Transplant. 2016;51(9):1271–4.PubMedCrossRef
168.
go back to reference Shaikh AG, et al. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J Neurol. 2013;260(11):2728–35.PubMedCrossRef Shaikh AG, et al. Effects of 4-aminopyridine on nystagmus and vestibulo-ocular reflex in ataxia-telangiectasia. J Neurol. 2013;260(11):2728–35.PubMedCrossRef
169.
go back to reference Haraldsson A. Immunoglobulin Treatment in Ataxia Telangiectasia. Nijmegen: Ataxia Telangiectasia Clinical Research Conference; 2014. Haraldsson A. Immunoglobulin Treatment in Ataxia Telangiectasia. Nijmegen: Ataxia Telangiectasia Clinical Research Conference; 2014.
170.
go back to reference Yamamoto ML, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013;73(14):4222–32.PubMedPubMedCentralCrossRef Yamamoto ML, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013;73(14):4222–32.PubMedPubMedCentralCrossRef
172.
go back to reference Teive HA, et al. Ataxia-telangiectasia - A historical review and a proposal for a new designation: ATM syndrome. J Neurol Sci. 2015;355(1–2):3–6.PubMedCrossRef Teive HA, et al. Ataxia-telangiectasia - A historical review and a proposal for a new designation: ATM syndrome. J Neurol Sci. 2015;355(1–2):3–6.PubMedCrossRef
173.
go back to reference Crawford TO. Outcome measures of neurodegeneration in ataxia telangiectasia. Beijing: International Ataxia Telangiectasia Workshop (ATW2015); 2015. Crawford TO. Outcome measures of neurodegeneration in ataxia telangiectasia. Beijing: International Ataxia Telangiectasia Workshop (ATW2015); 2015.
174.
go back to reference Crawford TO, et al. Quantitative neurologic assessment of ataxia-telangiectasia. Neurology. 2000;54(7):1505–9.PubMedCrossRef Crawford TO, et al. Quantitative neurologic assessment of ataxia-telangiectasia. Neurology. 2000;54(7):1505–9.PubMedCrossRef
175.
go back to reference Saunders-Pullman R, et al. Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites. Neurology. 2012;78(9):649–57.PubMedPubMedCentralCrossRef Saunders-Pullman R, et al. Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites. Neurology. 2012;78(9):649–57.PubMedPubMedCentralCrossRef
176.
go back to reference Churchyard A, Stell R, Mastaglia FL. Ataxia telangiectasia presenting as an extrapyramidal movement disorder and ocular motor apraxia without overt telangiectasia. Clin Exp Neurol. 1991;28:90–6.PubMed Churchyard A, Stell R, Mastaglia FL. Ataxia telangiectasia presenting as an extrapyramidal movement disorder and ocular motor apraxia without overt telangiectasia. Clin Exp Neurol. 1991;28:90–6.PubMed
177.
go back to reference Termsarasab P, Yang AC, Frucht SJ. Myoclonus in ataxia-telangiectasia, vol. 5. N Y: Tremor Other Hyperkinet Mov; 2015. p. 298. Termsarasab P, Yang AC, Frucht SJ. Myoclonus in ataxia-telangiectasia, vol. 5. N Y: Tremor Other Hyperkinet Mov; 2015. p. 298.
178.
go back to reference Tripathi DN, et al. A new role for ATM in selective autophagy of peroxisomes (pexophagy). Autophagy. 2016;12(4):711–2.PubMedCrossRef Tripathi DN, et al. A new role for ATM in selective autophagy of peroxisomes (pexophagy). Autophagy. 2016;12(4):711–2.PubMedCrossRef
179.
go back to reference Pan-Hammarstrom Q, et al. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol. 2003;170(7):3707–16.PubMedCrossRef Pan-Hammarstrom Q, et al. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. J Immunol. 2003;170(7):3707–16.PubMedCrossRef
181.
go back to reference Bagley J, Singh G, Iacomini J. Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation. J Immunol. 2007;178(8):4757–63.PubMedCrossRef Bagley J, Singh G, Iacomini J. Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation. J Immunol. 2007;178(8):4757–63.PubMedCrossRef
182.
go back to reference D’Souza AD, et al. Aberrant CD8(+) T-cell responses and memory differentiation upon viral infection of an ataxia-telangiectasia mouse model driven by hyper-activated Akt and mTORC1 signaling. Am J Pathol. 2011;178(6):2740–51.PubMedPubMedCentralCrossRef D’Souza AD, et al. Aberrant CD8(+) T-cell responses and memory differentiation upon viral infection of an ataxia-telangiectasia mouse model driven by hyper-activated Akt and mTORC1 signaling. Am J Pathol. 2011;178(6):2740–51.PubMedPubMedCentralCrossRef
183.
go back to reference Dar I, et al. Analysis of the ataxia telangiectasia mutated-mediated DNA damage response in murine cerebellar neurons. J Neurosci. 2006;26(29):7767–74.PubMedCrossRef Dar I, et al. Analysis of the ataxia telangiectasia mutated-mediated DNA damage response in murine cerebellar neurons. J Neurosci. 2006;26(29):7767–74.PubMedCrossRef
184.
go back to reference Biton S, et al. Nuclear ATM mediates the cellular response to DNA double strand breaks in human neuron-like cells. J Biol Chem. 2006;281(25):17482–91.PubMedCrossRef Biton S, et al. Nuclear ATM mediates the cellular response to DNA double strand breaks in human neuron-like cells. J Biol Chem. 2006;281(25):17482–91.PubMedCrossRef
185.
go back to reference Lee Y, Chong MJ, McKinnon PJ. Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J Neurosci. 2001;21(17):6687–93.PubMed Lee Y, Chong MJ, McKinnon PJ. Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J Neurosci. 2001;21(17):6687–93.PubMed
186.
go back to reference Sordet O, et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 2009;10(8):887–93.PubMedPubMedCentralCrossRef Sordet O, et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 2009;10(8):887–93.PubMedPubMedCentralCrossRef
187.
188.
189.
go back to reference Katyal S, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17(6):813–21.PubMedPubMedCentralCrossRef Katyal S, et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat Neurosci. 2014;17(6):813–21.PubMedPubMedCentralCrossRef
190.
go back to reference Iourov IY, et al. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet. 2009;18(14):2656–69.PubMedCrossRef Iourov IY, et al. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet. 2009;18(14):2656–69.PubMedCrossRef
191.
go back to reference Cosentino C, Grieco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. Embo J. 2011;30(3):546–55.PubMedCrossRef Cosentino C, Grieco D, Costanzo V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. Embo J. 2011;30(3):546–55.PubMedCrossRef
193.
195.
go back to reference Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst). 2008;7(7):1028–38.CrossRef Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair (Amst). 2008;7(7):1028–38.CrossRef
196.
go back to reference Marinoglou K. The role of the DNA damage response kinase ataxia telangiectasia mutated in neuroprotection. Yale J Biol Med. 2012;85(4):469–80.PubMedPubMedCentral Marinoglou K. The role of the DNA damage response kinase ataxia telangiectasia mutated in neuroprotection. Yale J Biol Med. 2012;85(4):469–80.PubMedPubMedCentral
198.
go back to reference D’Souza AD, et al. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol Ther. 2013;21(1):42–8.PubMedCrossRef D’Souza AD, et al. Reducing mitochondrial ROS improves disease-related pathology in a mouse model of ataxia-telangiectasia. Mol Ther. 2013;21(1):42–8.PubMedCrossRef
199.
go back to reference Sharma NK, et al. Intrinsic mitochondrial DNA repair defects in ataxia telangiectasia. DNA Repair (Amst). 2014;13:22–31.CrossRef Sharma NK, et al. Intrinsic mitochondrial DNA repair defects in ataxia telangiectasia. DNA Repair (Amst). 2014;13:22–31.CrossRef
200.
go back to reference Yang Y, Herrup K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci. 2005;25(10):2522–9.PubMedCrossRef Yang Y, Herrup K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci. 2005;25(10):2522–9.PubMedCrossRef
202.
203.
go back to reference Vail G, et al. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity. J Neurophysiol. 2016;116(1):201–9.PubMedCrossRef Vail G, et al. ATM protein is located on presynaptic vesicles and its deficit leads to failures in synaptic plasticity. J Neurophysiol. 2016;116(1):201–9.PubMedCrossRef
204.
205.
206.
go back to reference Jiang D, et al. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain. 2015;138(Pt 12):3520–36.PubMedCrossRef Jiang D, et al. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain. 2015;138(Pt 12):3520–36.PubMedCrossRef
207.
208.
go back to reference Wood LM, et al. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One. 2011;6(1):e16422.PubMedPubMedCentralCrossRef Wood LM, et al. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One. 2011;6(1):e16422.PubMedPubMedCentralCrossRef
209.
go back to reference Sun X, et al. Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J Pediatr. 2002;140(6):724–31.PubMedCrossRef Sun X, et al. Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J Pediatr. 2002;140(6):724–31.PubMedCrossRef
211.
go back to reference Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3(8–9):1219–25.CrossRef Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3(8–9):1219–25.CrossRef
Metadata
Title
Ataxia telangiectasia: a review
Authors
Cynthia Rothblum-Oviatt
Jennifer Wright
Maureen A. Lefton-Greif
Sharon A. McGrath-Morrow
Thomas O. Crawford
Howard M. Lederman
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2016
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-016-0543-7

Other articles of this Issue 1/2016

Orphanet Journal of Rare Diseases 1/2016 Go to the issue