Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2016

Open Access 01-12-2016 | Letter to the Editor

Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities

Authors: Brigitte Gilbert-Dussardier, Audrey Briand-Suleau, Ingrid Laurendeau, Frédéric Bilan, Hélène Cavé, Alain Verloes, Michel Vidaud, Dominique Vidaud, Eric Pasmant

Published in: Orphanet Journal of Rare Diseases | Issue 1/2016

Login to get access

Abstract

RAS/MAPK pathway germline mutations were described in Rasopathies, a class of rare genetic syndromes combining facial abnormalities, heart defects, short stature, skin and genital abnormalities, and mental retardation. The majority of the mutations identified in the Rasopathies are point mutations which increase RAS/MAPK pathway signaling. Duplications encompassing RAS/MAPK pathway genes (PTPN11, RAF1, MEK2, or SHOC2) were more rarely described. Here we report, a syndromic familial case of a 12p duplication encompassing the dosage sensitive gene KRAS, whose phenotype overlapped with rasopathies. The patient was referred because of a history of mild learning disabilities, small size, facial dysmorphy, and pigmentation abnormalities (café-au-lait and achromic spots, and axillar lentigines). This phenotype was reminiscent of rasopathies. No mutation was identified in the most common genes associated with Noonan, cardio-facio-cutaneous, Legius, and Costello syndromes, as well as neurofibromatosis type 1. The patient constitutional DNA exhibited a ~10.5 Mb duplication at 12p, including the KRAS gene. The index case’s mother carried the same chromosome abnormality and also showed development delay with short stature, and numerous café-au-lait spots. Duplication of the KRAS gene may participate in the propositus phenotype, in particular of the specific pigmentation abnormalities. Array-CGH or some other assessment of gene/exon CNVs of RAS/MAPK pathway genes should be considered in the evaluation of individuals with rasopathies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bentires-Alj M, Kontaridis MI, Neel BG. Stops along the RAS pathway in human genetic disease. Nat Med. 2006;12:283–5.CrossRefPubMed Bentires-Alj M, Kontaridis MI, Neel BG. Stops along the RAS pathway in human genetic disease. Nat Med. 2006;12:283–5.CrossRefPubMed
2.
go back to reference Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.CrossRefPubMed Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.CrossRefPubMed
4.
go back to reference Pasmant E, Sabbagh A, Spurlock G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat. 2010;31:E1506–18.CrossRefPubMed Pasmant E, Sabbagh A, Spurlock G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat. 2010;31:E1506–18.CrossRefPubMed
5.
go back to reference Lissewski C, Kant SG, Stark Z, Schanze I, Zenker M. Copy number variants including RAS pathway genes-How much RASopathy is in the phenotype? Am J Med Genet A. 2015;167A:2685–90.CrossRefPubMed Lissewski C, Kant SG, Stark Z, Schanze I, Zenker M. Copy number variants including RAS pathway genes-How much RASopathy is in the phenotype? Am J Med Genet A. 2015;167A:2685–90.CrossRefPubMed
6.
go back to reference Shchelochkov OA, Patel A, Weissenberger GM, et al. Duplication of chromosome band 12q24.11q24.23 results in apparent Noonan syndrome. Am J Med Genet A. 2008;146A:1042–8.CrossRefPubMed Shchelochkov OA, Patel A, Weissenberger GM, et al. Duplication of chromosome band 12q24.11q24.23 results in apparent Noonan syndrome. Am J Med Genet A. 2008;146A:1042–8.CrossRefPubMed
7.
go back to reference Graham Jr JM, Kramer N, Bejjani BA, et al. Genomic duplication of PTPN11 is an uncommon cause of Noonan syndrome. Am J Med Genet A. 2009;149A:2122–8.CrossRefPubMedPubMedCentral Graham Jr JM, Kramer N, Bejjani BA, et al. Genomic duplication of PTPN11 is an uncommon cause of Noonan syndrome. Am J Med Genet A. 2009;149A:2122–8.CrossRefPubMedPubMedCentral
8.
go back to reference Nowaczyk MJ, Thompson BA, Zeesman S, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy? Clin Genet. 2014;85:138–46.CrossRefPubMed Nowaczyk MJ, Thompson BA, Zeesman S, et al. Deletion of MAP2K2/MEK2: a novel mechanism for a RASopathy? Clin Genet. 2014;85:138–46.CrossRefPubMed
9.
go back to reference Nava C, Hanna N, Michot C, et al. Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet. 2007;44:763–71.CrossRefPubMedPubMedCentral Nava C, Hanna N, Michot C, et al. Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype-phenotype relationships and overlap with Costello syndrome. J Med Genet. 2007;44:763–71.CrossRefPubMedPubMedCentral
10.
go back to reference Pasmant E, Parfait B, Luscan A, et al. Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations? Eur J Hum Genet. 2015;23:596–601.CrossRefPubMed Pasmant E, Parfait B, Luscan A, et al. Neurofibromatosis type 1 molecular diagnosis: what can NGS do for you when you have a large gene with loss of function mutations? Eur J Hum Genet. 2015;23:596–601.CrossRefPubMed
11.
go back to reference Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Detection and characterization of NF1 microdeletions by custom high resolution array CGH. J Mol Diagn. 2009;11:524–9.CrossRefPubMedPubMedCentral Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Detection and characterization of NF1 microdeletions by custom high resolution array CGH. J Mol Diagn. 2009;11:524–9.CrossRefPubMedPubMedCentral
12.
go back to reference Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331–6.CrossRefPubMed Schubbert S, Zenker M, Rowe SL, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38:331–6.CrossRefPubMed
15.
go back to reference Picardo M, Cardinali G. The genetic determination of skin pigmentation: KITLG and the KITLG/c-Kit pathway as key players in the onset of human familial pigmentary diseases. J Invest Dermatol. 2011;131:1182–5.CrossRefPubMed Picardo M, Cardinali G. The genetic determination of skin pigmentation: KITLG and the KITLG/c-Kit pathway as key players in the onset of human familial pigmentary diseases. J Invest Dermatol. 2011;131:1182–5.CrossRefPubMed
16.
go back to reference Brems H, Chmara M, Sahbatou M, et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet. 2007;39:1120–6.CrossRefPubMed Brems H, Chmara M, Sahbatou M, et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet. 2007;39:1120–6.CrossRefPubMed
17.
go back to reference DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRefPubMed DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105:608–14.CrossRefPubMed
18.
go back to reference Pasmant E, Sabbagh A, Hanna N, et al. SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. J Med Genet. 2009;46:425–30.CrossRefPubMed Pasmant E, Sabbagh A, Hanna N, et al. SPRED1 germline mutations caused a neurofibromatosis type 1 overlapping phenotype. J Med Genet. 2009;46:425–30.CrossRefPubMed
Metadata
Title
Copy number variants and rasopathies: germline KRAS duplication in a patient with syndrome including pigmentation abnormalities
Authors
Brigitte Gilbert-Dussardier
Audrey Briand-Suleau
Ingrid Laurendeau
Frédéric Bilan
Hélène Cavé
Alain Verloes
Michel Vidaud
Dominique Vidaud
Eric Pasmant
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2016
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-016-0479-y

Other articles of this Issue 1/2016

Orphanet Journal of Rare Diseases 1/2016 Go to the issue