Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2015

Open Access 01-12-2015 | Research

De novo deletions and duplications of 17q25.3 cause susceptibility to cardiovascular malformations

Authors: F. J. Probst, R. A. James, L. C. Burrage, J. A. Rosenfeld, T. P. Bohan, C. H. Ward Melver, P. Magoulas, E. Austin, A. I. A. Franklin, M. Azamian, F. Xia, A. Patel, W. Bi, C. Bacino, J.W. Belmont, S. M. Ware, C. Shaw, S.W. Cheung, S. R. Lalani

Published in: Orphanet Journal of Rare Diseases | Issue 1/2015

Login to get access

Abstract

Background

Genomic disorders resulting from deletion or duplication of genomic segments are known to be an important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual with a de novo 17q25.3 deletion from a study of 714 individuals with CVM.

Methods

To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000 samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics Laboratory at Cincinnati Children’s Hospital. Using bioinformatic analyses including protein-protein interaction network, human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of 251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype for each of the 57 genes within the terminal 2.0 Mb of 17q25.3.

Results

We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications, observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with non-recurrent de novo deletions (range 0.08 Mb–1.4 Mb) in the subtelomeric region of 17q25.3. These included coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD) and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one had patent ductus arteriosus (PDA) at 8 months of age.

Conclusion

The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K, et al. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet. 2013;21(2):173–81.PubMedCentralPubMedCrossRef Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K, et al. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet. 2013;21(2):173–81.PubMedCentralPubMedCrossRef
2.
go back to reference Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41(8):931–5.PubMedCentralPubMedCrossRef Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet. 2009;41(8):931–5.PubMedCentralPubMedCrossRef
3.
go back to reference Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A. 2011;108(7):2915–20.PubMedCentralPubMedCrossRef Fakhro KA, Choi M, Ware SM, Belmont JW, Towbin JA, Lifton RP, et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A. 2011;108(7):2915–20.PubMedCentralPubMedCrossRef
4.
go back to reference Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet. 2012;81(6):542–54.PubMedCrossRef Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet. 2012;81(6):542–54.PubMedCrossRef
5.
go back to reference Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Davies R, Yang SW, et al. Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet. 2012;8(9), e1002903.PubMedCentralPubMedCrossRef Hitz MP, Lemieux-Perreault LP, Marshall C, Feroz-Zada Y, Davies R, Yang SW, et al. Rare copy number variants contribute to congenital left-sided heart disease. PLoS Genet. 2012;8(9), e1002903.PubMedCentralPubMedCrossRef
6.
go back to reference Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008;359(16):1685–99.PubMedCentralPubMedCrossRef Mefford HC, Sharp AJ, Baker C, Itsara A, Jiang Z, Buysse K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008;359(16):1685–99.PubMedCentralPubMedCrossRef
7.
go back to reference Dolcetti A, Silversides CK, Marshall CR, Lionel AC, Stavropoulos DJ, Scherer SW, et al. 1q21.1 Microduplication expression in adults. Genet Med. 2013;15(4):282–9.PubMedCrossRef Dolcetti A, Silversides CK, Marshall CR, Lionel AC, Stavropoulos DJ, Scherer SW, et al. 1q21.1 Microduplication expression in adults. Genet Med. 2013;15(4):282–9.PubMedCrossRef
8.
go back to reference Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012;8(8), e1002843.PubMedCentralPubMedCrossRef Silversides CK, Lionel AC, Costain G, Merico D, Migita O, Liu B, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012;8(8), e1002843.PubMedCentralPubMedCrossRef
9.
go back to reference Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M, et al. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008;82(1):214–21.PubMedCentralPubMedCrossRef Ben-Shachar S, Ou Z, Shaw CA, Belmont JW, Patel MS, Hummel M, et al. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet. 2008;82(1):214–21.PubMedCentralPubMedCrossRef
10.
go back to reference Fagerberg CR, Graakjaer J, Heinl UD, Ousager LB, Dreyer I, Kirchhoff M, et al. Heart defects and other features of the 22q11 distal deletion syndrome. Eur J Med Genet. 2013;56(2):98–107.PubMedCrossRef Fagerberg CR, Graakjaer J, Heinl UD, Ousager LB, Dreyer I, Kirchhoff M, et al. Heart defects and other features of the 22q11 distal deletion syndrome. Eur J Med Genet. 2013;56(2):98–107.PubMedCrossRef
11.
go back to reference Lukusa T, Fryns JP. Pure de novo 17q25.3 micro duplication characterized by micro array CGH in a dysmorphic infant with growth retardation, developmental delay and distal arthrogryposis. Genet Couns. 2010;21(1):25–34.PubMed Lukusa T, Fryns JP. Pure de novo 17q25.3 micro duplication characterized by micro array CGH in a dysmorphic infant with growth retardation, developmental delay and distal arthrogryposis. Genet Couns. 2010;21(1):25–34.PubMed
12.
go back to reference Christofolini DM, de Paula Ramos MA, Kulikowski LD, da Silva Bellucco FT, Belangero SI, Brunoni D, et al. Subtelomeric rearrangements and copy number variations in people with intellectual disabilities. J Intellect Disabil Res. 2010;54(10):938–42.PubMedCrossRef Christofolini DM, de Paula Ramos MA, Kulikowski LD, da Silva Bellucco FT, Belangero SI, Brunoni D, et al. Subtelomeric rearrangements and copy number variations in people with intellectual disabilities. J Intellect Disabil Res. 2010;54(10):938–42.PubMedCrossRef
13.
go back to reference Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E, et al. Severe intellectual disability, West syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 2013;161A(12):3144–9.PubMedCrossRef Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E, et al. Severe intellectual disability, West syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 2013;161A(12):3144–9.PubMedCrossRef
14.
go back to reference Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, Annunzio GD, et al. Severe presentation of WDR62 mutation: is there a role for modifying genetic factors? Am J Med Genet A. 2014;164A(9):2161–71.PubMedCrossRef Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, Annunzio GD, et al. Severe presentation of WDR62 mutation: is there a role for modifying genetic factors? Am J Med Genet A. 2014;164A(9):2161–71.PubMedCrossRef
15.
go back to reference Brisset S, Kasakyan S, L'Hermine AC, Mairovitz V, Gautier E, Aubry MC, et al. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency. Prenat Diagn. 2006;26(3):206–13.PubMedCrossRef Brisset S, Kasakyan S, L'Hermine AC, Mairovitz V, Gautier E, Aubry MC, et al. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency. Prenat Diagn. 2006;26(3):206–13.PubMedCrossRef
16.
go back to reference Fryns JP, Parloir C, Van den Berghe H. Partial trisomy 17q. Karyotype: 46, XY, der(21), t(17;21)(q22;p13). Hum Genet. 1979;49(3):361–4.PubMedCrossRef Fryns JP, Parloir C, Van den Berghe H. Partial trisomy 17q. Karyotype: 46, XY, der(21), t(17;21)(q22;p13). Hum Genet. 1979;49(3):361–4.PubMedCrossRef
17.
go back to reference Marques F, Heredia R, de Oliveira C, Cardoso MT, Mazzeu J, Pogue R. Partial trisomy 17q and partial monosomy 20q in a boy with craniosynostosis. Am J Med Genet A. 2015;167A(2):412–6.PubMedCrossRef Marques F, Heredia R, de Oliveira C, Cardoso MT, Mazzeu J, Pogue R. Partial trisomy 17q and partial monosomy 20q in a boy with craniosynostosis. Am J Med Genet A. 2015;167A(2):412–6.PubMedCrossRef
18.
go back to reference McCann E, Sweeney E, Sills J, May P, Smith S. Pfeiffer-type cardiocranial syndrome: a patient with features of this condition and with an unbalanced subtelomeric rearrangement involving chromosomes 1p and 17q. Clin Dysmorphol. 2006;15(2):81–4.PubMedCrossRef McCann E, Sweeney E, Sills J, May P, Smith S. Pfeiffer-type cardiocranial syndrome: a patient with features of this condition and with an unbalanced subtelomeric rearrangement involving chromosomes 1p and 17q. Clin Dysmorphol. 2006;15(2):81–4.PubMedCrossRef
19.
go back to reference Sarri C, Gyftodimou J, Avramopoulos D, Grigoriadou M, Pedersen W, Pandelia E, et al. Partial trisomy 17q22-qter and partial monosomy Xq27-qter in a girl with a de novo unbalanced translocation due to a postzygotic error: case report and review of the literature on partial trisomy 17qter. Am J Med Genet. 1997;70(1):87–94.PubMedCrossRef Sarri C, Gyftodimou J, Avramopoulos D, Grigoriadou M, Pedersen W, Pandelia E, et al. Partial trisomy 17q22-qter and partial monosomy Xq27-qter in a girl with a de novo unbalanced translocation due to a postzygotic error: case report and review of the literature on partial trisomy 17qter. Am J Med Genet. 1997;70(1):87–94.PubMedCrossRef
20.
go back to reference Velagaleti GV, Jalal SM, Michaelis RC, Rowe TF, Nichols JR, Lockhart LH. Molecular cytogenetic characterization of a de novo unbalanced translocation leading to trisomy 17q25→qter and monosomy 18p11.3→pter in a girl with dysmorphic features. Clin Dysmorphol. 2003;12(1):29–33.PubMedCrossRef Velagaleti GV, Jalal SM, Michaelis RC, Rowe TF, Nichols JR, Lockhart LH. Molecular cytogenetic characterization of a de novo unbalanced translocation leading to trisomy 17q25→qter and monosomy 18p11.3→pter in a girl with dysmorphic features. Clin Dysmorphol. 2003;12(1):29–33.PubMedCrossRef
21.
go back to reference Bacino CA, Kashork CD, Davino NA, Shaffer LG. Detection of a cryptic translocation in a family with mental retardation using FISH and telomere region-specific probes. Am J Med Genet. 2000;92(4):250–5.PubMedCrossRef Bacino CA, Kashork CD, Davino NA, Shaffer LG. Detection of a cryptic translocation in a family with mental retardation using FISH and telomere region-specific probes. Am J Med Genet. 2000;92(4):250–5.PubMedCrossRef
22.
go back to reference Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326–42.PubMedCentralPubMedCrossRef Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326–42.PubMedCentralPubMedCrossRef
23.
go back to reference Campbell IM, Rao M, Arredondo SD, Lalani SR, Xia Z, Kang SH, et al. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013;9(9), e1003797.PubMedCentralPubMedCrossRef Campbell IM, Rao M, Arredondo SD, Lalani SR, Xia Z, Kang SH, et al. Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet. 2013;9(9), e1003797.PubMedCentralPubMedCrossRef
24.
go back to reference Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83(5):610–5.PubMedCentralPubMedCrossRef Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83(5):610–5.PubMedCentralPubMedCrossRef
25.
go back to reference Kohler S, Schulz MH, Krawitz P, Bauer S, Dolken S, Ott CE, et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009;85(4):457–64.PubMedCentralPubMedCrossRef Kohler S, Schulz MH, Krawitz P, Bauer S, Dolken S, Ott CE, et al. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009;85(4):457–64.PubMedCentralPubMedCrossRef
26.
27.
go back to reference Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–7.PubMedCentralPubMedCrossRef Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–7.PubMedCentralPubMedCrossRef
28.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.PubMedCentralPubMedCrossRef Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.PubMedCentralPubMedCrossRef
29.
go back to reference Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 2009;1(3):390–9.PubMedCentralPubMedCrossRef Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 2009;1(3):390–9.PubMedCentralPubMedCrossRef
30.
go back to reference Lage K, Mollgard K, Greenway S, Wakimoto H, Gorham JM, Workman CT, et al. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol. 2010;6:381.PubMedCentralPubMedCrossRef Lage K, Mollgard K, Greenway S, Wakimoto H, Gorham JM, Workman CT, et al. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol. 2010;6:381.PubMedCentralPubMedCrossRef
31.
go back to reference Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods. 2009;6(1):75–7.PubMedCrossRef Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S. Integrated network analysis platform for protein-protein interactions. Nat Methods. 2009;6(1):75–7.PubMedCrossRef
32.
go back to reference Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012;44(4):440–4. 4.PubMedCentralPubMedCrossRef Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012;44(4):440–4. 4.PubMedCentralPubMedCrossRef
33.
go back to reference Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, et al. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014;23(3):292–301.PubMedCrossRef Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-Raman OA, Albrecht B, et al. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 2014;23(3):292–301.PubMedCrossRef
34.
go back to reference Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, et al. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development. 2002;129(7):1705–14.PubMed Wei L, Imanaka-Yoshida K, Wang L, Zhan S, Schneider MD, DeMayo FJ, et al. Inhibition of Rho family GTPases by Rho GDP dissociation inhibitor disrupts cardiac morphogenesis and inhibits cardiomyocyte proliferation. Development. 2002;129(7):1705–14.PubMed
35.
go back to reference Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene. 1999;18(39):5373–80.PubMedCrossRef Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene. 1999;18(39):5373–80.PubMedCrossRef
36.
go back to reference Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123(8):3243–53.PubMedCentralPubMedCrossRef Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest. 2013;123(8):3243–53.PubMedCentralPubMedCrossRef
37.
go back to reference Gupta IR, Baldwin C, Auguste D, Ha KC, El Andalousi J, Fahiminiya S, et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50(5):330–8.PubMedCentralPubMedCrossRef Gupta IR, Baldwin C, Auguste D, Ha KC, El Andalousi J, Fahiminiya S, et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J Med Genet. 2013;50(5):330–8.PubMedCentralPubMedCrossRef
38.
go back to reference Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703–10.PubMedCrossRef Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703–10.PubMedCrossRef
39.
go back to reference Miura S, Mishina Y. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) is involved in BMP signaling through phosphorylation of SMADS and TAK1 in early mouse embryo. Dev Dyn. 2011;240(11):2474–81.PubMedCentralPubMedCrossRef Miura S, Mishina Y. Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs) is involved in BMP signaling through phosphorylation of SMADS and TAK1 in early mouse embryo. Dev Dyn. 2011;240(11):2474–81.PubMedCentralPubMedCrossRef
40.
go back to reference Komada M, Soriano P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 1999;13(11):1475–85.PubMedCentralPubMedCrossRef Komada M, Soriano P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 1999;13(11):1475–85.PubMedCentralPubMedCrossRef
41.
go back to reference Desai N, Sajjad J, Frishman WH. Urotensin II: a new pharmacologic target in the treatment of cardiovascular disease. Cardiol Rev. 2008;16(3):142–53.PubMedCrossRef Desai N, Sajjad J, Frishman WH. Urotensin II: a new pharmacologic target in the treatment of cardiovascular disease. Cardiol Rev. 2008;16(3):142–53.PubMedCrossRef
42.
go back to reference Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, et al. Casein kinase 1delta functions at the centrosome and Golgi to promote ciliogenesis. Mol Biol Cell. 2014;25(10):1629–40.PubMedCentralPubMedCrossRef Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, et al. Casein kinase 1delta functions at the centrosome and Golgi to promote ciliogenesis. Mol Biol Cell. 2014;25(10):1629–40.PubMedCentralPubMedCrossRef
43.
go back to reference Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434(7033):640–4.PubMedCrossRef Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434(7033):640–4.PubMedCrossRef
Metadata
Title
De novo deletions and duplications of 17q25.3 cause susceptibility to cardiovascular malformations
Authors
F. J. Probst
R. A. James
L. C. Burrage
J. A. Rosenfeld
T. P. Bohan
C. H. Ward Melver
P. Magoulas
E. Austin
A. I. A. Franklin
M. Azamian
F. Xia
A. Patel
W. Bi
C. Bacino
J.W. Belmont
S. M. Ware
C. Shaw
S.W. Cheung
S. R. Lalani
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2015
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-015-0291-0

Other articles of this Issue 1/2015

Orphanet Journal of Rare Diseases 1/2015 Go to the issue