Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2015

Open Access 01-12-2015 | Research

Prevalence of inherited neurotransmitter disorders in patients with movement disorders and epilepsy: a retrospective cohort study

Authors: Saadet Mercimek-Mahmutoglu, Sarah Sidky, Keith Hyland, Jaina Patel, Elizabeth J Donner, William Logan, Roberto Mendoza-Londono, Mahendranath Moharir, Julian Raiman, Andreas Schulze, Komudi Siriwardena, Grace Yoon, Lianna Kyriakopoulou

Published in: Orphanet Journal of Rare Diseases | Issue 1/2015

Login to get access

Abstract

Background

Inherited neurotransmitter disorders are primary defects of neurotransmitter metabolism. The main purpose of this retrospective cohort study was to identify prevalence of inherited neurotransmitter disorders.

Methods

This retrospective cohort study does not have inclusion criteria; rather included all patients who underwent cerebrospinal fluid (CSF) homovanillic and 5-hydroxyindol acetic acid measurements. Patients with CSF neurotransmitter investigations suggestive of an inherited neurotransmitter disorder and patients with normal or non-diagnostic CSF neurotransmitter investigations underwent direct sequencing of single gene disorders.

Results

There were 154 patients between October 2004 and July 2013. Four patients were excluded due to their diagnosis prior to this study dates. Two major clinical feature categories of patients who underwent lumbar puncture were movement disorders or epilepsy in our institution. Twenty out of the 150 patients (13.3%) were diagnosed with a genetic disorder including inherited neurotransmitter disorders (6 patients) (dihydropteridine reductase, 6-pyruvoyl-tetrahydropterin synthase, guanosine triphosphate cyclohydrolase I, tyrosine hydroxylase, pyridoxine dependent epilepsy due to mutations in the ALDH7A1 gene and pyridoxamine-5-phosphate oxidase deficiencies) and non-neurotransmitter disorders (14 patients).

Conclusion

Prevalence of inherited neurotransmitter disorders was 4% in our retrospective cohort study. Eight out of the 150 patients (5.3%) had one of the treatable inherited metabolic disorders with favorable short-term neurodevelopmental outcomes, highlighting the importance of an early and specific diagnosis. Whole exome or genome sequencing might shed light to unravel underlying genetic defects of new inherited neurotransmitter disorders in near future.
Literature
1.
go back to reference Pearl PL, Capp PK, Novotny EJ, Gibson KM. Inherited disorders of neurotransmitters in children and adults. Clin Biochem. 2005;38:1051–8.CrossRefPubMed Pearl PL, Capp PK, Novotny EJ, Gibson KM. Inherited disorders of neurotransmitters in children and adults. Clin Biochem. 2005;38:1051–8.CrossRefPubMed
2.
go back to reference Pearl PL, Taylor JL, Trzcinski S, Sokohl A. The pediatric neurotransmitter disorders. J Child Neurol. 2007;22:606–16.CrossRefPubMed Pearl PL, Taylor JL, Trzcinski S, Sokohl A. The pediatric neurotransmitter disorders. J Child Neurol. 2007;22:606–16.CrossRefPubMed
3.
go back to reference Hyland K, Surtees RA, Heales SJ, Bowron A, Howells DW, Smith I. Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res. 1993;34:10–4.CrossRefPubMed Hyland K, Surtees RA, Heales SJ, Bowron A, Howells DW, Smith I. Cerebrospinal fluid concentrations of pterins and metabolites of serotonin and dopamine in a pediatric reference population. Pediatr Res. 1993;34:10–4.CrossRefPubMed
4.
go back to reference Hyland K. Cerebrospinal fluid analysis in the diagnosis of treatable inherited disorders of neurotransmitter metabolism. Future Neurol. 2006;1:593–603.CrossRef Hyland K. Cerebrospinal fluid analysis in the diagnosis of treatable inherited disorders of neurotransmitter metabolism. Future Neurol. 2006;1:593–603.CrossRef
6.
go back to reference Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: An expanding range of neurological syndromes. Lancet Neurol. 2011;10:721–33.CrossRefPubMed Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: An expanding range of neurological syndromes. Lancet Neurol. 2011;10:721–33.CrossRefPubMed
7.
go back to reference Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis. 2012;35:963–73.CrossRefPubMed Opladen T, Hoffmann GF, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis. 2012;35:963–73.CrossRefPubMed
8.
go back to reference Blau N, Bonafé L, Thöny B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab. 2001;74:172–85.CrossRefPubMed Blau N, Bonafé L, Thöny B. Tetrahydrobiopterin deficiencies without hyperphenylalaninemia: diagnosis and genetics of dopa-responsive dystonia and sepiapterin reductase deficiency. Mol Genet Metab. 2001;74:172–85.CrossRefPubMed
9.
go back to reference Assmann B, Surtees R, Hoffmann GF. Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann Neurol. 2003;54 Suppl 6:S18–24.CrossRefPubMed Assmann B, Surtees R, Hoffmann GF. Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann Neurol. 2003;54 Suppl 6:S18–24.CrossRefPubMed
10.
go back to reference Pons R. The phenotypic spectrum of pediatric neurotransmitter diseases and infantile parkinsonism. J Inherit Metab Dis. 2009;32:321–32.CrossRefPubMed Pons R. The phenotypic spectrum of pediatric neurotransmitter diseases and infantile parkinsonism. J Inherit Metab Dis. 2009;32:321–32.CrossRefPubMed
11.
go back to reference Garcia-Cazorla A, Wolf NI, Serrano M, Pérez-Dueñas B, Pineda M, Campistol J, et al. Inborn errors of metabolism and motor disturbances in children. J Inherit Metab Dis. 2009;32:618–29.CrossRefPubMed Garcia-Cazorla A, Wolf NI, Serrano M, Pérez-Dueñas B, Pineda M, Campistol J, et al. Inborn errors of metabolism and motor disturbances in children. J Inherit Metab Dis. 2009;32:618–29.CrossRefPubMed
12.
go back to reference Swoboda KJ, Hyland K. Diagnosis and treatment of neurotransmitter-related disorders. Neurol Clin. 2002;20:1143–61.CrossRefPubMed Swoboda KJ, Hyland K. Diagnosis and treatment of neurotransmitter-related disorders. Neurol Clin. 2002;20:1143–61.CrossRefPubMed
13.
go back to reference Haliloglu G, Vezir E, Baydar L, Onol S, Sivri S, Coşkun T, et al. When do we need to perform a diagnostic lumbar puncture for neurometabolic diseases? Positive yield and retrospective analysis from a tertiary center. Turk J Pediatr. 2012;54:52–8.PubMed Haliloglu G, Vezir E, Baydar L, Onol S, Sivri S, Coşkun T, et al. When do we need to perform a diagnostic lumbar puncture for neurometabolic diseases? Positive yield and retrospective analysis from a tertiary center. Turk J Pediatr. 2012;54:52–8.PubMed
14.
go back to reference Hyland K. The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol. 2003;54 Suppl 6:S13–7.CrossRefPubMed Hyland K. The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol. 2003;54 Suppl 6:S13–7.CrossRefPubMed
15.
go back to reference Howells DW, Hyland K. Direct analysis of tetrahydrobiopterin in CSF by high-performance liquid chromatography with redox electrochemistry: prevention of anti oxidation during storage and analysis. Clin Chim Acta. 1987;167:23–30.CrossRefPubMed Howells DW, Hyland K. Direct analysis of tetrahydrobiopterin in CSF by high-performance liquid chromatography with redox electrochemistry: prevention of anti oxidation during storage and analysis. Clin Chim Acta. 1987;167:23–30.CrossRefPubMed
16.
go back to reference Oppliger T, Thöny B, Kluge C, Matasovic A, Heizmann CW, Ponzone A, et al. Identification of mutations causing 6-pyruvoyl-tetrahydropterin synthase deficiency in four Italian families. Hum Mutat. 1997;10:25–35.CrossRefPubMed Oppliger T, Thöny B, Kluge C, Matasovic A, Heizmann CW, Ponzone A, et al. Identification of mutations causing 6-pyruvoyl-tetrahydropterin synthase deficiency in four Italian families. Hum Mutat. 1997;10:25–35.CrossRefPubMed
17.
go back to reference Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat. 2006;27:870–8.CrossRefPubMed Thöny B, Blau N. Mutations in the BH4-metabolizing genes GTP cyclohydrolase I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase. Hum Mutat. 2006;27:870–8.CrossRefPubMed
18.
go back to reference Mak CM, Lam CW, Siu TS, Chan KY, Siu WK, Yeung WL, et al. Biochemical and molecular characterization of tyrosine hydroxylase deficiency in Hong Kong Chinese. Mol Genet Metab. 2010;99:431–3.CrossRefPubMed Mak CM, Lam CW, Siu TS, Chan KY, Siu WK, Yeung WL, et al. Biochemical and molecular characterization of tyrosine hydroxylase deficiency in Hong Kong Chinese. Mol Genet Metab. 2010;99:431–3.CrossRefPubMed
19.
go back to reference Guerin A, Aziz AS, Mutch C, Lewis J, Go CY, Mercimek-Mahmutoglu S: Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature. J Child Neurol [Epub ahead of print] 2014 Oct 7. Guerin A, Aziz AS, Mutch C, Lewis J, Go CY, Mercimek-Mahmutoglu S: Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature. J Child Neurol [Epub ahead of print] 2014 Oct 7.
20.
go back to reference Wilson A, Leclerc D, Saberi F, Campeau E, Hwang HY, Shane B, et al. Functionally null mutations in patients with the cblG-variant form of methionine synthase deficiency. Am J Hum Genet. 1998;63:409–14.CrossRefPubMedCentralPubMed Wilson A, Leclerc D, Saberi F, Campeau E, Hwang HY, Shane B, et al. Functionally null mutations in patients with the cblG-variant form of methionine synthase deficiency. Am J Hum Genet. 1998;63:409–14.CrossRefPubMedCentralPubMed
21.
go back to reference Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.PubMedCentralPubMed Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.PubMedCentralPubMed
22.
go back to reference Denora PS, Schlesinger D, Casali C, Kok F, Tessa A, Boukhris A, et al. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat. 2009;30:500–19.CrossRef Denora PS, Schlesinger D, Casali C, Kok F, Tessa A, Boukhris A, et al. Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat. 2009;30:500–19.CrossRef
23.
go back to reference Guidubaldi A, Piano C, Santorelli FM, Silvestri G, Petracca M, Tessa A, et al. Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord. 2011;26:553–6.CrossRefPubMed Guidubaldi A, Piano C, Santorelli FM, Silvestri G, Petracca M, Tessa A, et al. Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord. 2011;26:553–6.CrossRefPubMed
24.
go back to reference Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet. 2006;38:801–6.CrossRefPubMedCentralPubMed Rees MI, Harvey K, Pearce BR, Chung SK, Duguid IC, Thomas P, et al. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Nat Genet. 2006;38:801–6.CrossRefPubMedCentralPubMed
25.
go back to reference Ruzzo EK, Capo-Chichi JM, Ben-Zeev B, Chitayat D, Mao H, Pappas AL, et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron. 2013;80:429–41.CrossRefPubMed Ruzzo EK, Capo-Chichi JM, Ben-Zeev B, Chitayat D, Mao H, Pappas AL, et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron. 2013;80:429–41.CrossRefPubMed
26.
go back to reference Molero-Luis M, Serrano M, Ormazábal A, Pérez-Dueñas B, García-Cazorla A, Pons R, et al. Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Neurotransmitter Working Group. Dev Med Child Neurol. 2013;55:559–66.CrossRefPubMed Molero-Luis M, Serrano M, Ormazábal A, Pérez-Dueñas B, García-Cazorla A, Pons R, et al. Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders. Neurotransmitter Working Group. Dev Med Child Neurol. 2013;55:559–66.CrossRefPubMed
27.
go back to reference Furukawa Y. GTP Cyclohydrolase 1-Deficient Dopa-Responsive Dystonia. In: Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. Pagon RA. Seattle (WA): University of Washington, Seattle; 2014. Furukawa Y. GTP Cyclohydrolase 1-Deficient Dopa-Responsive Dystonia. In: Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K, editors. Pagon RA. Seattle (WA): University of Washington, Seattle; 2014.
28.
go back to reference Van Hove JL, Steyaert J, Matthijs G, Legius E, Theys P, Wevers R, et al. Expanded motor and psychiatric phenotype in autosomal dominant Segawa syndrome due to GTP cyclohydrolase deficiency. J Neurol Neurosurg Psychiatry. 2006;77:18–23.CrossRefPubMedCentralPubMed Van Hove JL, Steyaert J, Matthijs G, Legius E, Theys P, Wevers R, et al. Expanded motor and psychiatric phenotype in autosomal dominant Segawa syndrome due to GTP cyclohydrolase deficiency. J Neurol Neurosurg Psychiatry. 2006;77:18–23.CrossRefPubMedCentralPubMed
29.
go back to reference Nygaard TG. Dopa-responsive dystonia. Delineation of the clinical syndrome and clues to pathogenesis. Adv Neurol. 1993;60:577–85.PubMed Nygaard TG. Dopa-responsive dystonia. Delineation of the clinical syndrome and clues to pathogenesis. Adv Neurol. 1993;60:577–85.PubMed
31.
go back to reference Van Der Heyden JC, Rotteveel JJ, Wevers RA. Decreased homovanillic acid concentrations in cerebrospinal fluid in children without a known defect in dopamine metabolism. Eur J Paediatr Neurol. 2003;7:31–7.CrossRef Van Der Heyden JC, Rotteveel JJ, Wevers RA. Decreased homovanillic acid concentrations in cerebrospinal fluid in children without a known defect in dopamine metabolism. Eur J Paediatr Neurol. 2003;7:31–7.CrossRef
32.
go back to reference Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34:1721–6.CrossRefPubMed Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34:1721–6.CrossRefPubMed
33.
go back to reference Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia. 2012;21:1387–98.CrossRef Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia. 2012;21:1387–98.CrossRef
34.
go back to reference Kodera H, Mitsuhiro K, Nord AS, Walsh T, Lee M, Yamanaka G, et al. Target capture and sequencing for detection of mutation causing early onset epileptic encephalopathy. Epilepsia. 2013;54:1262–9.CrossRefPubMed Kodera H, Mitsuhiro K, Nord AS, Walsh T, Lee M, Yamanaka G, et al. Target capture and sequencing for detection of mutation causing early onset epileptic encephalopathy. Epilepsia. 2013;54:1262–9.CrossRefPubMed
35.
go back to reference Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825–30.CrossRefPubMed Carvill GL, Heavin SB, Yendle SC, McMahon JM, O’Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45:825–30.CrossRefPubMed
36.
go back to reference Della Mina E, Ciccone R, Brustia F, Bayindir B, Limongelli I, Vetro A, Iascone M, Pezzoli L, Bellazzi R, Perotti G, De Giorgis V, Lunghi S, Coppola G, Orcesi S, Merli P, Savasta S, Veggiotti P, Zuffardi O. Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform. Eur J Hum Genet, in press. Della Mina E, Ciccone R, Brustia F, Bayindir B, Limongelli I, Vetro A, Iascone M, Pezzoli L, Bellazzi R, Perotti G, De Giorgis V, Lunghi S, Coppola G, Orcesi S, Merli P, Savasta S, Veggiotti P, Zuffardi O. Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform. Eur J Hum Genet, in press.
37.
go back to reference Wang J, Gotway G, Pascual JM, Park JY. Diagnostic yield of clinical next-generation sequencing panels for epilepsy. JAMA Neurol. 2014;71:650–1.CrossRefPubMed Wang J, Gotway G, Pascual JM, Park JY. Diagnostic yield of clinical next-generation sequencing panels for epilepsy. JAMA Neurol. 2014;71:650–1.CrossRefPubMed
Metadata
Title
Prevalence of inherited neurotransmitter disorders in patients with movement disorders and epilepsy: a retrospective cohort study
Authors
Saadet Mercimek-Mahmutoglu
Sarah Sidky
Keith Hyland
Jaina Patel
Elizabeth J Donner
William Logan
Roberto Mendoza-Londono
Mahendranath Moharir
Julian Raiman
Andreas Schulze
Komudi Siriwardena
Grace Yoon
Lianna Kyriakopoulou
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2015
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-015-0234-9

Other articles of this Issue 1/2015

Orphanet Journal of Rare Diseases 1/2015 Go to the issue