Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Research

Shuganyin decoction improves the intestinal barrier function in a rat model of irritable bowel syndrome induced by water-avoidance stress

Authors: Lu Lu, Liang Yan, Jianye Yuan, Qing Ye, Jiang Lin

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Background

To determine the effect of Shuganyin decoction (SGD) on the intestinal barrier function in an irritable bowel syndrome (IBS) rat model induced by water-avoidance stress.

Methods

Forty male Wistar rats were divided into control, water-avoidance stress (WAS) group, WAS plus Shuganyin decoction (SGD) group and WAS plus dicetel (Dicetel) group. IBS was induced in rats by subjecting them to water-avoidance stress for 7 days. On day 4 of the WAS protocol, the rats were treated for 7 consecutive days (days 4–11) with SGD, dicetel or a negative control (saline). The number of feces granules, histopathological changes of the intestine and mast cell (MC) morphometry were determined. Intestinal permeability was approximated by measuring the absorption of FITC-dextran 4400 (FD-4) from the lumen into the bloodstream in vivo and in vitro experiments. Also, the expression of protease active receptor-2 (PAR-2) and tumor necrosis factor-α (TNF-α) was estimated using immunohistochemical staining and ELISA, respectively. Tight junction (TJ) protein abundance was measured following a quantitative immunofluorescent analysis of intestinal sections and western blotting.

Results

In vivo, WAS elicited a significantly increase in the transfer of FD-4 from the intestine to blood about threefold in 30 min compared with control group. After treated with SGD, the intestinal permeability to FD-4 of WAS-induced rats was significantly attenuated (P < 0.05). In vitro, the permeability coefficient (Papp) values were measured for FD-4 absorption across the excised intestine. WAS was shown to increase the intestinal permeability to (4.695 ± 0.3629) × 10−7 cm/s in 120 min, which was 2.6-fold higher than the control group. Rats treated with SGD showed a significant decrease in Papp values of FD-4 as compared to WAS group (P < 0.05). Furthermore, by immunofluorescent detection we found that WAS elicited the irregular distribution of TJ proteins. Using the quantitative analysis software of the medical image, the average optical density and protein abundance of TJ proteins was shown to be lower in the WAS group as compared to control group, (P < 0.05). SGD could attenuate this response and improve TJ distribution (P < 0.05). Western blot analysis confirmed that TJ protein abundance was significantly decreased in WAS group and that they could be returned to control levels following an SGD treatment. WAS also induced an increase in number of MCs, their area and diameter as compared to controls. These observations were attenuated with an SGD or dicetel treatment. Similarly, the expression of PAR-2 and TNF-α exceeded control values in the WAS group and were shown to be successfully attenuated with an SGD treatment.

Conclusion

WAS-induced IBS rat model exhibited intestinal barrier dysfunction, which was manifested as tight junction damage and structural rearrangements that increased the intestinal permeability. Under these conditions, MCs were activated and degranulated in the intestinal mucosa leading to the activation of PAR-2. Our data showed that SGD could inhibit the activation of MCs and down-regulate the expression of both PAR-2 and TNF-α. In turn, this was shown to improve the expression and structural arrangement of TJ proteins in the intestinal mucosa, thereby regulating the intestinal permeability. It was concluded that Shuganyin could protect the intestinal barrier.
Appendix
Available only for authorised users
Literature
1.
go back to reference Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–91.CrossRefPubMed Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mearin F, Spiller RC. Functional bowel disorders. Gastroenterology. 2006;130:1480–91.CrossRefPubMed
2.
go back to reference Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45(Suppl 2):II43–7.PubMedPubMedCentral Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Muller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut. 1999;45(Suppl 2):II43–7.PubMedPubMedCentral
3.
go back to reference Piche T, Barbara G, Aubert P, Bruley des Varannes S, Dainese R, Nano JL, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009;58:196–201.CrossRefPubMed Piche T, Barbara G, Aubert P, Bruley des Varannes S, Dainese R, Nano JL, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009;58:196–201.CrossRefPubMed
4.
go back to reference Park JH, Park DI, Kim HJ, Cho YK, Sohn CI, Jeon WK, et al. The relationship between small-intestinal bacterial overgrowth and intestinal permeability in patients with irritable bowel syndrome. Gut Liver. 2009;3:174–9.CrossRefPubMedPubMedCentral Park JH, Park DI, Kim HJ, Cho YK, Sohn CI, Jeon WK, et al. The relationship between small-intestinal bacterial overgrowth and intestinal permeability in patients with irritable bowel syndrome. Gut Liver. 2009;3:174–9.CrossRefPubMedPubMedCentral
5.
go back to reference Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol. 2006;101:1288–94.CrossRefPubMed Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am J Gastroenterol. 2006;101:1288–94.CrossRefPubMed
6.
go back to reference Zhou Q, Souba WW, Croce CM, Verne GN. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 2010;59:775–84.CrossRefPubMed Zhou Q, Souba WW, Croce CM, Verne GN. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut. 2010;59:775–84.CrossRefPubMed
8.
go back to reference Halland M, Saito YA. Irritable bowel syndrome: new and emerging treatments. BMJ. 2015;18(350):h1622.CrossRef Halland M, Saito YA. Irritable bowel syndrome: new and emerging treatments. BMJ. 2015;18(350):h1622.CrossRef
9.
go back to reference Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39:S184–93.CrossRefPubMed Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39:S184–93.CrossRefPubMed
10.
go back to reference Barbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil. 2006;18:6–17.CrossRefPubMed Barbara G, Stanghellini V, De Giorgio R, Corinaldesi R. Functional gastrointestinal disorders and mast cells: implications for therapy. Neurogastroenterol Motil. 2006;18:6–17.CrossRefPubMed
11.
go back to reference Bradesi S, Schwetz I, Ennes HS, Lamy CM, Ohning G, Fanselow M, Pothoulakis C, McRoberts JA, Mayer EA. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2005;289:G42–53.CrossRefPubMed Bradesi S, Schwetz I, Ennes HS, Lamy CM, Ohning G, Fanselow M, Pothoulakis C, McRoberts JA, Mayer EA. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2005;289:G42–53.CrossRefPubMed
12.
go back to reference Shi HL, Liu CH, Ding LL, et al. Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction. World J Gastroenterol. 2015;21(16):4852–63.CrossRefPubMedPubMedCentral Shi HL, Liu CH, Ding LL, et al. Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction. World J Gastroenterol. 2015;21(16):4852–63.CrossRefPubMedPubMedCentral
13.
go back to reference Xiao DT, Hong C, Xiao WQ, et al. Platelet-activating factor increases mucosal permeability in rat intestine via tyrosine phosphorylation of E-cadherin. Br J Pharmacol. 2000;129(7):1522–9.CrossRef Xiao DT, Hong C, Xiao WQ, et al. Platelet-activating factor increases mucosal permeability in rat intestine via tyrosine phosphorylation of E-cadherin. Br J Pharmacol. 2000;129(7):1522–9.CrossRef
14.
go back to reference Fan Y, Wu DZ, Gong YQ, et al. Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells. Eur J Pharmacol. 2003;481(1):33–40.CrossRefPubMed Fan Y, Wu DZ, Gong YQ, et al. Effects of calycosin on the impairment of barrier function induced by hypoxia in human umbilical vein endothelial cells. Eur J Pharmacol. 2003;481(1):33–40.CrossRefPubMed
15.
go back to reference Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci. 2002;47:208–15.CrossRefPubMed Saunders PR, Santos J, Hanssen NP, Yates D, Groot JA, Perdue MH. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci. 2002;47:208–15.CrossRefPubMed
16.
go back to reference Kiliaan AJ, Saunders PR, Bijlsma PB, Berin MC, Taminiau JA, et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol. 1998;275:G1037–44.PubMed Kiliaan AJ, Saunders PR, Bijlsma PB, Berin MC, Taminiau JA, et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol. 1998;275:G1037–44.PubMed
18.
go back to reference Piche T. Tight junctions and IBS—the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol Motil. 2014;26:296–302.CrossRefPubMed Piche T. Tight junctions and IBS—the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol Motil. 2014;26:296–302.CrossRefPubMed
19.
go back to reference Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol. 2001;281:G216–28.CrossRefPubMed Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, et al. Inflammatory bowel disease is associated with changes of enterocytic junctions. Am J Physiol Gastrointest Liver Physiol. 2001;281:G216–28.CrossRefPubMed
20.
go back to reference Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63:1293–9.CrossRefPubMed Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63:1293–9.CrossRefPubMed
22.
go back to reference Ivanov AI, Nusrat A, Parkos CA. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays. 2005;27:356–65.CrossRefPubMed Ivanov AI, Nusrat A, Parkos CA. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays. 2005;27:356–65.CrossRefPubMed
23.
go back to reference Usami Y, Chiba H, Nakayama F, Ueda J, Matsuda Y, Sawada N, Komori T, Ito A, Yokozaki H. Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus. Hum Pathol. 2006;37:569–77.CrossRefPubMed Usami Y, Chiba H, Nakayama F, Ueda J, Matsuda Y, Sawada N, Komori T, Ito A, Yokozaki H. Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus. Hum Pathol. 2006;37:569–77.CrossRefPubMed
24.
go back to reference Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995;269:467–75. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995;269:467–75.
25.
go back to reference Ma TY, Iwamoto GK, Hoa NT, et al. TNF-alpha-induce increase in intestinal epithelial tight junction permeability requires NF-KappaB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367–76.CrossRefPubMed Ma TY, Iwamoto GK, Hoa NT, et al. TNF-alpha-induce increase in intestinal epithelial tight junction permeability requires NF-KappaB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367–76.CrossRefPubMed
26.
go back to reference Martinez C, Lobo B, Pigrau M, Ramos L, Gonzalez-Castro AM, Alonso C, Guilarte M, Guila M, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013;62:1160–8.CrossRefPubMed Martinez C, Lobo B, Pigrau M, Ramos L, Gonzalez-Castro AM, Alonso C, Guilarte M, Guila M, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013;62:1160–8.CrossRefPubMed
27.
go back to reference Martinez C, Vicario M, Ramos L, Lobo B, Mosquera JL, Alonso C, Sanchez A, Guilarte M, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. 2012;107:736–46.CrossRefPubMed Martinez C, Vicario M, Ramos L, Lobo B, Mosquera JL, Alonso C, Sanchez A, Guilarte M, et al. The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am J Gastroenterol. 2012;107:736–46.CrossRefPubMed
28.
go back to reference Cenac N, Chin AC, Garcia-Villar R, Salvador-Cartier C, Ferrier L, Vergnolle N, Buret AG, Fioramonti J, Bueno L. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol. 2004;558:913–25.CrossRefPubMedPubMedCentral Cenac N, Chin AC, Garcia-Villar R, Salvador-Cartier C, Ferrier L, Vergnolle N, Buret AG, Fioramonti J, Bueno L. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol. 2004;558:913–25.CrossRefPubMedPubMedCentral
29.
go back to reference Anton PA. Stress and mind-body impact on the course of inflammatory bowel diseases. Semin Gastrointest Dis. 1999;10(1):14–9.PubMed Anton PA. Stress and mind-body impact on the course of inflammatory bowel diseases. Semin Gastrointest Dis. 1999;10(1):14–9.PubMed
30.
go back to reference Levenstein S, Prantera C, Varvo V, Scribano ML, Andreoli A, Luzi C, Arca M, Berto E, Milite G, Marcheggiano A. Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am J Gastroenterol. 2000;95:1213–20.CrossRefPubMed Levenstein S, Prantera C, Varvo V, Scribano ML, Andreoli A, Luzi C, Arca M, Berto E, Milite G, Marcheggiano A. Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am J Gastroenterol. 2000;95:1213–20.CrossRefPubMed
31.
go back to reference Lohman RJ, Cotterell AJ, Suen J, et al. Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther. 2012;340(2):256–65.CrossRefPubMed Lohman RJ, Cotterell AJ, Suen J, et al. Antagonism of protease-activated receptor 2 protects against experimental colitis. J Pharmacol Exp Ther. 2012;340(2):256–65.CrossRefPubMed
Metadata
Title
Shuganyin decoction improves the intestinal barrier function in a rat model of irritable bowel syndrome induced by water-avoidance stress
Authors
Lu Lu
Liang Yan
Jianye Yuan
Qing Ye
Jiang Lin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-017-0161-x

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue