Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2018

Open Access 01-12-2018 | Research article

Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase

Authors: Sebastian Vogt, Volker Ruppert, Sabine Pankuweit, Jürgen P. J. Paletta, Annika Rhiel, Petra Weber, Marc Irqsusi, Pia Cybulski, Rabia Ramzan

Published in: Journal of Cardiothoracic Surgery | Issue 1/2018

Login to get access

Abstract

Background

Treatment of heart failure remains one of the most challenging task for intensive care medicine, cardiology and cardiac surgery. New options and better indicators are always required. Understanding the basic mechanisms underlying heart failure promote the development of adjusted therapy e.g. assist devices and monitoring of recovery. If cardiac failure is related to compromised cellular respiration of the heart, remains unclear. Myocardial respiration depends on Cytochrome c- Oxidase (CytOx) activity representing the rate limiting step for the mitochondrial respiratory chain. The enzymatic activity as well as mRNA expression of enzyme’s mitochondrial encoded catalytic subunit 2, nuclear encoded regulatory subunit 4 and protein contents were studied in biopsies of cardiac patients suffering from myocardial insufficiency and dilated cardiomyopathy (DCM).

Methods

Fifty-four patients were enrolled in the study and underwent coronary angiography. Thirty male patients (mean age: 45 +/− 15 yrs.) had a reduced ejection fraction (EF) 35 ± 12% below 45% and a left ventricular end diastolic diameter (LVEDD) of 71 ± 10 mm bigger than 56 mm. They were diagnosed as having idiopathic dilated cardiomyopathy (DCM) without coronary heart disease and NYHA-class 3 and 4. Additionally, 24 male patients (mean age: 52 +/− 11 yrs.) after exclusion of secondary cardiomyopathies, coronary artery or valve disease, served as control (EF: 68 ± 7, LVEDD: 51 ± 7 mm). Total RNA was extracted from two biopsies of each person. Real-time PCR analysis was performed with specific primers followed by a melt curve analysis. Corresponding protein expression in the tissue was studied with immune-histochemistry while enzymatic activity was evaluated by spectroscopy.

Results

Gene and protein expression analysis of patients showed a significant decrease of subunit 4 (1.1 vs. 0.6, p < 0.001; 7.7 ± 3.1% vs. 2.8 ± 1.4%, p < 0.0001) but no differences in subunit 2. Correlations were found between reduced subunit 2 expression, low EF (r = 0.766, p < 0.00045) and increased LVEDD (r = 0.492, p < 0.0068). In case of DCM less subunit 4 expression and reduced shortening fraction (r = 0.524, p < 0.017) was found, but enzymatic activity was higher (0.08 ± 0.06 vs. 0.26 ± 0.08 U/mg, p < 0.001) although myocardial oxygen consumption continued to the same extent.

Conclusion

In case of myocardial insufficiency and DCM, decreased expression of COX 4 results in an impaired CytOx activity. Higher enzymatic activity but equal oxygen consumption contribute to the pathophysiology of the myocardial insufficiency and appears as an indicator of oxidative stress. This kind of dysregulation should be in the focus for the development of diagnostic and therapy procedures.
Literature
1.
go back to reference Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behavior versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behavior versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef
2.
go back to reference Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2010;1797(9):1672–80.CrossRef Ramzan R, Staniek K, Kadenbach B, Vogt S. Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta. 2010;1797(9):1672–80.CrossRef
3.
go back to reference Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta. 2010;1800(3):205–12.CrossRef Kadenbach B, Ramzan R, Wen L, Vogt S. New extension of the Mitchell theory for oxidative phosphorylation in mitochondria of living organisms. Biochim Biophys Acta. 2010;1800(3):205–12.CrossRef
4.
go back to reference Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays. 2016;38(6):556–67.CrossRef Vogt S, Rhiel A, Weber P, Ramzan R. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS. Bioessays. 2016;38(6):556–67.CrossRef
5.
go back to reference Arnold S. The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion. 2012;12(1):46–56.CrossRef Arnold S. The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion. 2012;12(1):46–56.CrossRef
6.
go back to reference Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Rad Biol Med. 2000;29:202–10.CrossRef Villani G, Attardi G. In vivo control of respiration by cytochrome c oxidase in human cells. Free Rad Biol Med. 2000;29:202–10.CrossRef
7.
go back to reference Villani G, Greco M, Papa S, Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998;273(48):31829–36.CrossRef Villani G, Greco M, Papa S, Attardi G. Low reserve of cytochrome c oxidase capacity in vivo in the respiratory chain of a variety of human cell types. J Biol Chem. 1998;273(48):31829–36.CrossRef
8.
go back to reference Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 2015;24:64–76.CrossRef Kadenbach B, Hüttemann M. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 2015;24:64–76.CrossRef
9.
go back to reference Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38(5–6):283–91.CrossRef Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38(5–6):283–91.CrossRef
10.
go back to reference Buchwald A, Till H, Unterberg C, Oberschmidt R, et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J. 1990;11:509–16.CrossRef Buchwald A, Till H, Unterberg C, Oberschmidt R, et al. Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J. 1990;11:509–16.CrossRef
11.
go back to reference Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12(2):294–304.CrossRef Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12(2):294–304.CrossRef
12.
go back to reference Li YY, Maisch B, Rose ML, et al. Point mutations in mitochondrial DNA of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1997;29:2699–709.CrossRef Li YY, Maisch B, Rose ML, et al. Point mutations in mitochondrial DNA of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1997;29:2699–709.CrossRef
13.
go back to reference Ruppert V, Nolte D, Aschenbrenner T, et al. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;28:535–43.CrossRef Ruppert V, Nolte D, Aschenbrenner T, et al. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun. 2004;28:535–43.CrossRef
14.
go back to reference Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.CrossRef Arbustini E, Diegoli M, Fasani R, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol. 1998;153:1501–10.CrossRef
15.
go back to reference Kadenbach B, Huttemann M, Arnold S, et al. Mitochondrial energy metabolism is related via nuclear-coded subunits of cytochrome c oxidase. Free Rad Biol Med. 2000;29:211–21.CrossRef Kadenbach B, Huttemann M, Arnold S, et al. Mitochondrial energy metabolism is related via nuclear-coded subunits of cytochrome c oxidase. Free Rad Biol Med. 2000;29:211–21.CrossRef
16.
go back to reference Pecina P, Houstkova H, Hansikova H, et al. Genetic defects of cytochrome c oxidase assembly. Physiol Res. 2004;53:S213–23.PubMed Pecina P, Houstkova H, Hansikova H, et al. Genetic defects of cytochrome c oxidase assembly. Physiol Res. 2004;53:S213–23.PubMed
17.
go back to reference Holm L, Saraste M, Wikström M. Structural models of the redox centres in cytochrome oxidase. EMBO J. 1987;6:2819–23.CrossRef Holm L, Saraste M, Wikström M. Structural models of the redox centres in cytochrome oxidase. EMBO J. 1987;6:2819–23.CrossRef
18.
go back to reference Steffens GC, Soulimane T, Wolff G, Buse G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur J Biochem. 1993;213:1149–57.CrossRef Steffens GC, Soulimane T, Wolff G, Buse G. Stoichiometry and redox behaviour of metals in cytochrome-c oxidase. Eur J Biochem. 1993;213:1149–57.CrossRef
19.
go back to reference Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRef Li Y, Park JS, Deng JH, Bai Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr. 2006;38:283–91.CrossRef
20.
go back to reference Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef Ramzan R, Weber P, Kadenbach B, Vogt S. Individual biochemical behaviour versus biological robustness: spotlight on the regulation of cytochrome c oxidase. Adv Exp Med Biol. 2012;748:265–81.CrossRef
21.
go back to reference Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRef Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRef
22.
go back to reference Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.CrossRef Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.CrossRef
23.
go back to reference Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRef Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRef
24.
go back to reference Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem. 2017;398(7):737–50.CrossRef Ramzan R, Schaper AK, Weber P, Rhiel A, Siddiq MS, Vogt S. Mitochondrial cytochrome c oxidase is inhibited by ATP only at very high ATP/ADP ratios. Biol Chem. 2017;398(7):737–50.CrossRef
25.
go back to reference Braunwald E. 50th anniversary historical article. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol. 1999;34(5):1365–8.CrossRef Braunwald E. 50th anniversary historical article. Myocardial oxygen consumption: the quest for its determinants and some clinical fallout. J Am Coll Cardiol. 1999;34(5):1365–8.CrossRef
26.
go back to reference Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.CrossRef Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331:1564–75.CrossRef
27.
go back to reference Jarreta D, Orus J, Barrientos A, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45:860–5.CrossRef Jarreta D, Orus J, Barrientos A, et al. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45:860–5.CrossRef
28.
go back to reference Borisov VB. Mutations in respiratory chain complexes and human diseases. Ital J Biochem. 2004;53:34–40.PubMed Borisov VB. Mutations in respiratory chain complexes and human diseases. Ital J Biochem. 2004;53:34–40.PubMed
29.
go back to reference Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106:46–52.CrossRef Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106:46–52.CrossRef
30.
go back to reference Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Molec Genet. 2003;12:2693–702.CrossRef Antonicka H, Leary SC, Guercin GH, Agar JN, Horvath R, Kennaway NG, Harding CO, Jaksch M, Shoubridge EA. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency. Hum Molec Genet. 2003;12:2693–702.CrossRef
31.
go back to reference Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK 2) deficiency. Mol Genetics Metabol. 2003;79:1–5.CrossRef Saada A, Shaag A, Elpeleg O. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK 2) deficiency. Mol Genetics Metabol. 2003;79:1–5.CrossRef
32.
go back to reference Hittel DS, Storey KM. Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol. 2002;205:1625–31.PubMed Hittel DS, Storey KM. Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol. 2002;205:1625–31.PubMed
33.
go back to reference Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 2003;57:147–57.CrossRef Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res. 2003;57:147–57.CrossRef
34.
go back to reference Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab. 2004;286:E968–74.CrossRef Sheehan TE, Kumar PA, Hood DA. Tissue-specific regulation of cytochrome c oxidase subunit expression by thyroid hormone. Am J Physiol Endocrinol Metab. 2004;286:E968–74.CrossRef
35.
go back to reference Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671–82.CrossRef Wei YH, Lee HC. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med. 2002;227:671–82.CrossRef
36.
go back to reference Huigsloot M, Nijtmans LG, Szklarczyk R, Baars MJ, van den Brand MA, Hendriksfranssen MG, van den Heuvel LP, Smeitink JA, Huynen MA, Rodenburg RJ. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:488–9.CrossRef Huigsloot M, Nijtmans LG, Szklarczyk R, Baars MJ, van den Brand MA, Hendriksfranssen MG, van den Heuvel LP, Smeitink JA, Huynen MA, Rodenburg RJ. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am J Hum Genet. 2011;88:488–9.CrossRef
37.
go back to reference Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12:294–304.CrossRef Hüttemann M, Klewer S, Lee I, Pecinova A, Pecina P, Liu J, Lee M, Doan JW, Larson D, Slack E, Maghsoodi B, Erickson RP, Grossman LI. Mice deleted for heart-type cytochrome c oxidase subunit 7a1 develop dilated cardiomyopathy. Mitochondrion. 2012;12:294–304.CrossRef
38.
go back to reference Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem. 1997;378:1013–21.CrossRef Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem. 1997;378:1013–21.CrossRef
39.
go back to reference Napiwotzki J, Kadenbach B. Extramitochondrial ATP/ADP ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem. 1998;379:335–9.CrossRef Napiwotzki J, Kadenbach B. Extramitochondrial ATP/ADP ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem. 1998;379:335–9.CrossRef
40.
go back to reference Vijayasarathy C, Damle S, Prabu SK, et al. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem. 2003;270:871–9.CrossRef Vijayasarathy C, Damle S, Prabu SK, et al. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. Eur J Biochem. 2003;270:871–9.CrossRef
41.
go back to reference Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128(5):833–7.CrossRef Dennerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128(5):833–7.CrossRef
42.
go back to reference Desquiret V, Loiseau D, Jacques C, et al. Dinitrophenol- induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochim Biophys Acta. 2006;1757:21–30.CrossRef Desquiret V, Loiseau D, Jacques C, et al. Dinitrophenol- induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells. Biochim Biophys Acta. 2006;1757:21–30.CrossRef
43.
go back to reference Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxidative Med Cell Longev. 2017;2017:1534056.CrossRef Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxidative Med Cell Longev. 2017;2017:1534056.CrossRef
44.
go back to reference Fang W, Zhang J, He ZX. Myocardial ischemia in patients with dilated cardiomyopathy. Nucl Med Commun. 2010;31(11):981–4.CrossRef Fang W, Zhang J, He ZX. Myocardial ischemia in patients with dilated cardiomyopathy. Nucl Med Commun. 2010;31(11):981–4.CrossRef
45.
go back to reference Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, Sever E, Clarke K, Watkins H, Ashrafian H, Karamitsos TD, Neubauer S. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8(6):1088–93.PubMedPubMedCentral Dass S, Holloway CJ, Cochlin LE, Rider OJ, Mahmod M, Robson M, Sever E, Clarke K, Watkins H, Ashrafian H, Karamitsos TD, Neubauer S. No evidence of myocardial oxygen deprivation in nonischemic heart failure. Circ Heart Fail. 2015;8(6):1088–93.PubMedPubMedCentral
46.
go back to reference Zheng J, Gropler RJ. Myocardial Hypoxia in Dilated Cardiomyopathy: Is it Just a Matter of Supply and Demand? Circ Heart Fail. 2015;8(6):1011–3.CrossRef Zheng J, Gropler RJ. Myocardial Hypoxia in Dilated Cardiomyopathy: Is it Just a Matter of Supply and Demand? Circ Heart Fail. 2015;8(6):1011–3.CrossRef
47.
go back to reference Laine H, Katoh C, Luotolahti M, Yki-Järvinen H, Kantola I, Jula A, Takala TO, Ruotsalainen U, Iida H, Haaparanta M, Nuutila P, Knuuti J. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100(24):2425–30.CrossRef Laine H, Katoh C, Luotolahti M, Yki-Järvinen H, Kantola I, Jula A, Takala TO, Ruotsalainen U, Iida H, Haaparanta M, Nuutila P, Knuuti J. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation. 1999;100(24):2425–30.CrossRef
Metadata
Title
Myocardial insufficiency is related to reduced subunit 4 content of cytochrome c oxidase
Authors
Sebastian Vogt
Volker Ruppert
Sabine Pankuweit
Jürgen P. J. Paletta
Annika Rhiel
Petra Weber
Marc Irqsusi
Pia Cybulski
Rabia Ramzan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2018
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-018-0785-7

Other articles of this Issue 1/2018

Journal of Cardiothoracic Surgery 1/2018 Go to the issue