Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2017

Open Access 01-12-2017 | Research article

Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells

Authors: Xu Ma, Zhijuan He, Ling Li, Guofeng Liu, Qingchun Li, Daping Yang, Yingbo Zhang, Ning Li

Published in: Journal of Cardiothoracic Surgery | Issue 1/2017

Login to get access

Abstract

Background

Tissue engineering has emerged as a promising alternative for small-diameter vascular grafts. The aim of this study was to determine the feasibility of using decellularized aortae of fetal pigs (DAFPs) to construct tissue-engineered, small-diameter vascular grafts and to test the performance and application of DAFPs as vascular tissue-engineered scaffolds in the canine arterial system.

Methods

DAFPs were prepared by continuous enzymatic digestion. Canine vascular endothelial cells (ECs) were seeded onto DAFPs in vitro and then the vascular grafts were cultured in a custom-designed vascular bioreactor system for 7 days of dynamic culture following 3 days of static culture. The grafts were then transplanted into the common carotid artery of the same seven dogs from which ECs had been derived (two grafts were prepared for each dog with one as a backup; therefore, a total of 14 tissue-engineered blood vessels were prepared). At 1, 3, and 6 months post-transplantation, ultrasonography and contrast-enhanced computed tomography (CT) were used to check the patency of the grafts. Additionally, vascular grafts were sampled for histological and electron microscopic examination.

Results

Tissue-engineered, small-diameter vascular grafts can be successfully constructed using DAFPs and canine vascular ECs. Ultrasonographic and CT test results confirmed that implanted vascular grafts displayed good patency with no obvious thrombi. Six months after implantation, the grafts had been remodeled and exhibited a similar structure to normal arteries. Immunohistochemical staining showed that cells had evenly infiltrated the tunica media and were identified as muscular fibroblasts. Scanning electron microscopy showed that the graft possessed a complete cell layer, and the internal cells of the graft were confirmed to be ECs by transmission electron microscopy.

Conclusions

Tissue-engineered, small-diameter vascular grafts constructed using DAFPs and canine vascular ECs can be successfully transplanted to replace the canine common carotid artery. This investigation potentially paves the way for solving a problem of considerable clinical need, i.e., the requirement for small-diameter vascular grafts.
Literature
1.
go back to reference Kullo IJ, Rooke TW. Peripheral artery disease. N Engl J Med. 2016;374:861–71. Kullo IJ, Rooke TW. Peripheral artery disease. N Engl J Med. 2016;374:861–71. 
2.
go back to reference Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2016;5:22–37.CrossRefPubMed Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2016;5:22–37.CrossRefPubMed
4.
go back to reference Wang W, Hu J, He C, Nie W, Feng W, Qiu K, et al. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. J Biomed Mater Res A. 2015;103:1784–97.CrossRefPubMed Wang W, Hu J, He C, Nie W, Feng W, Qiu K, et al. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. J Biomed Mater Res A. 2015;103:1784–97.CrossRefPubMed
5.
go back to reference Grace NGJ, Soojung L, Robert BJ, Hwa JY, Eun YJ, Mi NB, et al. Trends in tissue engineering for blood vessels. J Biomed Biotechnol. 2012;2012:956345. Grace NGJ, Soojung L, Robert BJ, Hwa JY, Eun YJ, Mi NB, et al. Trends in tissue engineering for blood vessels. J Biomed Biotechnol. 2012;2012:956345.
6.
7.
go back to reference O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.CrossRef O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.CrossRef
8.
go back to reference Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C. 2010;30:1204–10.CrossRef Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C. 2010;30:1204–10.CrossRef
9.
go back to reference Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013;88:327–39.CrossRef Zhao W, Jin X, Cong Y, Liu Y, Fu J. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013;88:327–39.CrossRef
10.
go back to reference Mcfetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70A:224–34.CrossRef Mcfetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A. 2004;70A:224–34.CrossRef
11.
go back to reference Lopez-Ruiz E, Venkateswaran S, Peran M, Jimenez G, Pernagallo S, Diaz-Mochon JJ, et al. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement. Sci Rep. 2017;7:017–00294.CrossRef Lopez-Ruiz E, Venkateswaran S, Peran M, Jimenez G, Pernagallo S, Diaz-Mochon JJ, et al. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement. Sci Rep. 2017;7:017–00294.CrossRef
12.
go back to reference Böer U, Hurtadoaguilar LG, Klingenberg M, Lau S, Jockenhoevel S, Haverich A, et al. Effect of intensified Decellularization of equine carotid arteries on scaffold biomechanics and Cytotoxicity. Ann Biomed Eng. 2015;49:2630–41.CrossRef Böer U, Hurtadoaguilar LG, Klingenberg M, Lau S, Jockenhoevel S, Haverich A, et al. Effect of intensified Decellularization of equine carotid arteries on scaffold biomechanics and Cytotoxicity. Ann Biomed Eng. 2015;49:2630–41.CrossRef
13.
go back to reference Liu GF, He ZJ, Yang DP, Han XF, Guo TF, Hao CG, et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin Med J. 2008;121:1398–406.PubMed Liu GF, He ZJ, Yang DP, Han XF, Guo TF, Hao CG, et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft. Chin Med J. 2008;121:1398–406.PubMed
14.
go back to reference Abt PL, Praestgaard J, West S, Hasz R. Donor hemodynamic profile presages graft survival in donation after cardiac death liver transplantation. Liver Transpl. 2014;20:165–72.CrossRefPubMed Abt PL, Praestgaard J, West S, Hasz R. Donor hemodynamic profile presages graft survival in donation after cardiac death liver transplantation. Liver Transpl. 2014;20:165–72.CrossRefPubMed
15.
go back to reference Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29:1065–74.CrossRefPubMedPubMedCentral Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29:1065–74.CrossRefPubMedPubMedCentral
16.
go back to reference Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods. 2012;18:866–76.CrossRefPubMedPubMedCentral Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods. 2012;18:866–76.CrossRefPubMedPubMedCentral
17.
go back to reference Falk J, Townsend LE, Vogel LM, Boyer M, Olt S, Wease GL, et al. Improved adherence of genetically modified endothelial cells to small-diameter expanded polytetrafluoroethylene grafts in a canine model. J Vasc Surg. 1998;27:902–9.CrossRefPubMed Falk J, Townsend LE, Vogel LM, Boyer M, Olt S, Wease GL, et al. Improved adherence of genetically modified endothelial cells to small-diameter expanded polytetrafluoroethylene grafts in a canine model. J Vasc Surg. 1998;27:902–9.CrossRefPubMed
18.
go back to reference Aper T, Teebken O, Steinhoff G, Haverich A. Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg. 2004;28:296–302.CrossRefPubMed Aper T, Teebken O, Steinhoff G, Haverich A. Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg. 2004;28:296–302.CrossRefPubMed
19.
go back to reference Pratumvinit B, Reesukumal K, Janebodin K, Ieronimakis N, Reyes M. Isolation, characterization, and transplantation of cardiac endothelial cells. Biomed Res Int. 2013;2013:359412.CrossRefPubMedPubMedCentral Pratumvinit B, Reesukumal K, Janebodin K, Ieronimakis N, Reyes M. Isolation, characterization, and transplantation of cardiac endothelial cells. Biomed Res Int. 2013;2013:359412.CrossRefPubMedPubMedCentral
20.
go back to reference Xu J, Ge H, Zhou X, Yang D, Guo T, He J, et al. Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision. J Vasc Res. 2005;42:503–8.CrossRefPubMed Xu J, Ge H, Zhou X, Yang D, Guo T, He J, et al. Tissue-engineered vessel strengthens quickly under physiological deformation: application of a new perfusion bioreactor with machine vision. J Vasc Res. 2005;42:503–8.CrossRefPubMed
21.
go back to reference Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.CrossRefPubMed Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5:1–13.CrossRefPubMed
22.
go back to reference Cleary MA, Geiger E, Grady C, Best C, Naito Y, Breuer C. Vascular tissue engineering: the next generation. Trends Mol Med. 2012;18:394–404.CrossRefPubMed Cleary MA, Geiger E, Grady C, Best C, Naito Y, Breuer C. Vascular tissue engineering: the next generation. Trends Mol Med. 2012;18:394–404.CrossRefPubMed
23.
go back to reference Peng H-F, Liu JY, Andreadis ST, Swartz DD. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng A. 2011;17:981–90.CrossRef Peng H-F, Liu JY, Andreadis ST, Swartz DD. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng A. 2011;17:981–90.CrossRef
24.
go back to reference Li Q, Huang C, Xu Z, Liu G, Liu Y, Xiao Z, et al. The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold. Aesthet Plast Surg. 2013;37:822–32.CrossRef Li Q, Huang C, Xu Z, Liu G, Liu Y, Xiao Z, et al. The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold. Aesthet Plast Surg. 2013;37:822–32.CrossRef
25.
go back to reference Dudash LA, Kligman F, Sarett SM, Kottke-Marchant K, Marchant RE. Endothelial cell attachment and shear response on biomimetic polymer-coated vascular grafts. J Biomed Mater Res A. 2012;100:2204–10.CrossRefPubMedPubMedCentral Dudash LA, Kligman F, Sarett SM, Kottke-Marchant K, Marchant RE. Endothelial cell attachment and shear response on biomimetic polymer-coated vascular grafts. J Biomed Mater Res A. 2012;100:2204–10.CrossRefPubMedPubMedCentral
26.
go back to reference Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng B Rev. 2010;16:341–50.CrossRef Villalona GA, Udelsman B, Duncan DR, McGillicuddy E, Sawh-Martinez RF, Hibino N, et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng B Rev. 2010;16:341–50.CrossRef
27.
go back to reference Zhou R, Zhu L, Fu S, Qian Y, Wang D, Wang C. Small diameter blood vessels bioengineered from human adipose-derived stem cells. Sci Rep. 2016;6:35422. Zhou R, Zhu L, Fu S, Qian Y, Wang D, Wang C. Small diameter blood vessels bioengineered from human adipose-derived stem cells. Sci Rep. 2016;6:35422.
28.
go back to reference Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface. 2014;11:20130852.CrossRefPubMedPubMedCentral Qiu J, Zheng Y, Hu J, Liao D, Gregersen H, Deng X, et al. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding. J R Soc Interface. 2014;11:20130852.CrossRefPubMedPubMedCentral
29.
go back to reference Fernandez CE, Achneck HE, Reichert WM, Truskey GA. Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Curr Opin Chem Eng. 2014;3:83–90.CrossRefPubMedPubMedCentral Fernandez CE, Achneck HE, Reichert WM, Truskey GA. Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Curr Opin Chem Eng. 2014;3:83–90.CrossRefPubMedPubMedCentral
30.
go back to reference Stewart SF, Lyman DJ. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech. 1992;25:297–310.CrossRefPubMed Stewart SF, Lyman DJ. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J Biomech. 1992;25:297–310.CrossRefPubMed
31.
go back to reference Yazdani SK, Watts B, Machingal M, Jarajapu YP, Van Dyke ME, Christ GJ. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng A. 2009;15:827–40.CrossRef Yazdani SK, Watts B, Machingal M, Jarajapu YP, Van Dyke ME, Christ GJ. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng A. 2009;15:827–40.CrossRef
32.
go back to reference Hopkinson C, Romano V, Kaye R, Steger B, Stewart R, Tsagkataki M, et al. The influence of donor and recipient gender incompatibility on corneal transplant rejection and failure. Am J Transplant. 2017;17:210–7.CrossRefPubMed Hopkinson C, Romano V, Kaye R, Steger B, Stewart R, Tsagkataki M, et al. The influence of donor and recipient gender incompatibility on corneal transplant rejection and failure. Am J Transplant. 2017;17:210–7.CrossRefPubMed
33.
go back to reference Ekser B, Cooper DK, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg. 2015;23:199–204.CrossRefPubMedPubMedCentral Ekser B, Cooper DK, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg. 2015;23:199–204.CrossRefPubMedPubMedCentral
34.
go back to reference Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol. 2016;238:288–99.CrossRefPubMed Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol. 2016;238:288–99.CrossRefPubMed
Metadata
Title
Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells
Authors
Xu Ma
Zhijuan He
Ling Li
Guofeng Liu
Qingchun Li
Daping Yang
Yingbo Zhang
Ning Li
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2017
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-017-0661-x

Other articles of this Issue 1/2017

Journal of Cardiothoracic Surgery 1/2017 Go to the issue