Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Research article

Design and evaluation of nano-hydroxyapatite/poly(vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid)/nano-hydroxyapatite/poly(vinyl alcohol) scaffolds for cartilage repair

Authors: Weiping Su, Yihe Hu, Min Zeng, Mingqing Li, Shaoru Lin, Yangying Zhou, Jie Xie

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Poly(vinyl alcohol) (PVA) hydrogels have been widely used in synthetic cartilage materials. However, limitations of PVA hydrogels such as poor biomechanics and limited cell ingrowth remain challenges in this field.

Methods

This work aimed to design novel nano-hydroxyapatite (nano-HA)/poly(vinyl alcohol) (PVA) hydrogels coated with a poly(lactic-co-glycolic acid) (PLGA)/nano-HA/PVA scaffold to counter the limitations of PVA hydrogels. The core, comprising nano-HA/PVA hydrogel, had the primary role of bearing the mechanical load. The peripheral structure, composed of PLGA/nano-HA/PVA, was designed to favor interaction with surrounding cartilage.

Results

The double-layer HA/PVA hydrogel coated with PLGA/HA/PVA scaffold was successfully prepared using a two-step molding method, and the mechanical properties and biocompatibility were characterized. The mechanical properties of the novel PLGA/HA/PVA scaffold modified HA/PVA hydrogel were similar to those of native cartilage and showed greater sensitivity to compressive stress than to tensile stress. Rabbit chondrocytes were seeded in the composites to assess the biocompatibility and practicability in vitro. The results showed that the peripheral component comprising 30 wt% PLGA/5 wt% HA/15 wt% PVA was most conducive to rabbit chondrocyte adhesion and proliferation.

Conclusions

The study indicated that the double-layer HA/PVA hydrogel coated with PLGA/HA/PVA scaffold has the potential for cartilage repair.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bauer KL. Osteochondral injuries of the knee in pediatric patients [J]. J Knee Surg. 2018;31(5):382–91.CrossRef Bauer KL. Osteochondral injuries of the knee in pediatric patients [J]. J Knee Surg. 2018;31(5):382–91.CrossRef
2.
go back to reference Bhattacharjee M, Coburn J, Centola M, et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration [J]. Adv Drug Deliv Rev. 2015;84:107–22.CrossRef Bhattacharjee M, Coburn J, Centola M, et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration [J]. Adv Drug Deliv Rev. 2015;84:107–22.CrossRef
3.
go back to reference Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol. 2015;11(1):21–34.CrossRef Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol. 2015;11(1):21–34.CrossRef
4.
go back to reference McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc Rev. 2008;16(4):196–201.CrossRef McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc Rev. 2008;16(4):196–201.CrossRef
5.
go back to reference Thiede RM, Lu Y, Markel MD. A review of the treatment methods for cartilage defects. Vet Comp Orthop Traumatol. 2012;25(4):263–72.CrossRef Thiede RM, Lu Y, Markel MD. A review of the treatment methods for cartilage defects. Vet Comp Orthop Traumatol. 2012;25(4):263–72.CrossRef
6.
go back to reference Hurtig M, Pearce S, Warren S, Kalra M, Miniaci A. Arthroscopic mosaic arthroplasty in the equine third carpal bone. Vet Surg. 2001;30(3):228–39.CrossRef Hurtig M, Pearce S, Warren S, Kalra M, Miniaci A. Arthroscopic mosaic arthroplasty in the equine third carpal bone. Vet Surg. 2001;30(3):228–39.CrossRef
7.
go back to reference Pan Y, Xiong D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial. J Mater Sci Mater Med. 2009;20(6):1291–7.CrossRef Pan Y, Xiong D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial. J Mater Sci Mater Med. 2009;20(6):1291–7.CrossRef
8.
go back to reference Pan Y, Xiong D, Gao F. Viscoelastic behavior of nano-hydroxyapatite reinforced poly (vinyl alcohol) gel biocomposites as an articular cartilage. J Mater Sci Mater Med. 2008;19(5):1963–9.CrossRef Pan Y, Xiong D, Gao F. Viscoelastic behavior of nano-hydroxyapatite reinforced poly (vinyl alcohol) gel biocomposites as an articular cartilage. J Mater Sci Mater Med. 2008;19(5):1963–9.CrossRef
9.
go back to reference Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530–44.CrossRef Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530–44.CrossRef
10.
go back to reference Baykal D, Underwood RJ, Mansmann K, et al. Evaluation of friction properties of hydrogels based on a biphasic cartilage model [J]. J Mech Behav Biomed Mater. 2013;28:263–73.CrossRef Baykal D, Underwood RJ, Mansmann K, et al. Evaluation of friction properties of hydrogels based on a biphasic cartilage model [J]. J Mech Behav Biomed Mater. 2013;28:263–73.CrossRef
11.
go back to reference Khandan A, Jazayeri H, Fahmy MD, Razavi M. Hydrogels: types, structure, properties, and applications [J]. Biomat Tiss Eng. 2017;4(27):143–69. Khandan A, Jazayeri H, Fahmy MD, Razavi M. Hydrogels: types, structure, properties, and applications [J]. Biomat Tiss Eng. 2017;4(27):143–69.
12.
go back to reference Baker MI, Walsh SP, Schwartz Z, et al. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications [J]. J Biomed Mater Res B Appl Biomater. 2012;100(5):1451–7.CrossRef Baker MI, Walsh SP, Schwartz Z, et al. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications [J]. J Biomed Mater Res B Appl Biomater. 2012;100(5):1451–7.CrossRef
13.
go back to reference Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus [J]. Biomaterials. 2005;26(16):3243–8.CrossRef Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus [J]. Biomaterials. 2005;26(16):3243–8.CrossRef
14.
go back to reference Heydary HA, Karamian E, Poorazizi E, Khandan A, Heydaripour J. A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Materials Science. 2015;11:176–182.CrossRef Heydary HA, Karamian E, Poorazizi E, Khandan A, Heydaripour J. A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Materials Science. 2015;11:176–182.CrossRef
15.
go back to reference Maher SA, Doty SB, Torzilli PA, et al. Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res A. 2007;83(1):145–55.CrossRef Maher SA, Doty SB, Torzilli PA, et al. Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res A. 2007;83(1):145–55.CrossRef
16.
go back to reference Maiolo AS, Amado MN, Gonzalez JS, Alvarez VA. Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Mater Sci Eng C Mater Biol Appl. 2012;32(6):1490–5.CrossRef Maiolo AS, Amado MN, Gonzalez JS, Alvarez VA. Development and characterization of poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Mater Sci Eng C Mater Biol Appl. 2012;32(6):1490–5.CrossRef
17.
go back to reference Pereira DR, Silva-Correia J, Oliveira JM, et al. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration [J]. J Tissue Eng Regen Med. 2013;7(2):85–98.CrossRef Pereira DR, Silva-Correia J, Oliveira JM, et al. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration [J]. J Tissue Eng Regen Med. 2013;7(2):85–98.CrossRef
18.
go back to reference Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage [J]. J Mech Behav Biomed Mater. 2014;34:47–56.CrossRef Gonzalez JS, Alvarez VA. Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential artificial cartilage [J]. J Mech Behav Biomed Mater. 2014;34:47–56.CrossRef
19.
go back to reference Dormer NH, Singh M, Wang L, et al. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals [J]. Ann Biomed Eng. 2010;38(6):2167–82.CrossRef Dormer NH, Singh M, Wang L, et al. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals [J]. Ann Biomed Eng. 2010;38(6):2167–82.CrossRef
20.
go back to reference Bailey BM, Nail LN, Grunlan MA. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration [J]. Acta Biomater. 2013;9(9):8254–61.CrossRef Bailey BM, Nail LN, Grunlan MA. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration [J]. Acta Biomater. 2013;9(9):8254–61.CrossRef
21.
go back to reference Khandan A, Ozada N, Saber-Samandari S, Nejad MG. On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceramics International 2018;44(3):3141–8.CrossRef Khandan A, Ozada N, Saber-Samandari S, Nejad MG. On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceramics International 2018;44(3):3141–8.CrossRef
22.
go back to reference Lin HY, Tsai WC, Chang SH. Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair. J Biomater Sci Polym Ed. 2017;28(7):664–78.CrossRef Lin HY, Tsai WC, Chang SH. Collagen-PVA aligned nanofiber on collagen sponge as bi-layered scaffold for surface cartilage repair. J Biomater Sci Polym Ed. 2017;28(7):664–78.CrossRef
23.
go back to reference Nie L, Zhang G, Hou R, Xu H, Li Y, Fu J. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres. Colloids Surf B Biointerfaces. 2015;125:51–7.CrossRef Nie L, Zhang G, Hou R, Xu H, Li Y, Fu J. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres. Colloids Surf B Biointerfaces. 2015;125:51–7.CrossRef
24.
go back to reference Song W, Markel DC, Wang S, Shi T, Mao G, Ren W. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology. 2012;23(11):115101.CrossRef Song W, Markel DC, Wang S, Shi T, Mao G, Ren W. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology. 2012;23(11):115101.CrossRef
25.
go back to reference Dormer NH, Singh M, Zhao L, et al. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals [J]. J Biomed Mater Res A. 2012;100(1):162–70.CrossRef Dormer NH, Singh M, Zhao L, et al. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals [J]. J Biomed Mater Res A. 2012;100(1):162–70.CrossRef
26.
go back to reference AN EK, Saber-Samandari S. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique [J]. Nanomedicine J. 2017;4(3):177–83. AN EK, Saber-Samandari S. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique [J]. Nanomedicine J. 2017;4(3):177–83.
27.
go back to reference JX MZ, SL ML, YH WS. Design and evaluation of poly (lactic-co-glyclic acid)/poly (vinyl alcohol)/nano-hydroxyapatite hydrogels for cartilage tissue engineering in vitro [J]. Int J Clin Exp Med. 2016;9(6):9817–27. JX MZ, SL ML, YH WS. Design and evaluation of poly (lactic-co-glyclic acid)/poly (vinyl alcohol)/nano-hydroxyapatite hydrogels for cartilage tissue engineering in vitro [J]. Int J Clin Exp Med. 2016;9(6):9817–27.
28.
go back to reference SS AK, Nejad MG. Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: fabrication, characterization and simulation [J]. Ceramics. 2019;45(11):14126–35.CrossRef SS AK, Nejad MG. Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: fabrication, characterization and simulation [J]. Ceramics. 2019;45(11):14126–35.CrossRef
29.
go back to reference AH MF, NAA ASH. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated [J]. Arch Oral Biol. 2014;59(12):1400–11.CrossRef AH MF, NAA ASH. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated [J]. Arch Oral Biol. 2014;59(12):1400–11.CrossRef
30.
go back to reference Wang T, Lai JH, Yang F. Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo [J]. Tissue Eng Part A. 2016;22(23–24):1348–56.CrossRef Wang T, Lai JH, Yang F. Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo [J]. Tissue Eng Part A. 2016;22(23–24):1348–56.CrossRef
31.
go back to reference Sen KS, Duarte Campos DF, Köpf M, et al. The effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of Mesenchymal stromal cells toward Osteogenesis [J]. Adv Healthc Mater. 2018;7(18):e1800343.CrossRef Sen KS, Duarte Campos DF, Köpf M, et al. The effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of Mesenchymal stromal cells toward Osteogenesis [J]. Adv Healthc Mater. 2018;7(18):e1800343.CrossRef
32.
go back to reference Subramanian A, Krishnan UM, Sethuraman S. In vivo biocompatibility of PLGA-polyhexylthiophene nanofiber scaffolds in a rat model [J]. Biomed Res Int. 2013;2013:390518.CrossRef Subramanian A, Krishnan UM, Sethuraman S. In vivo biocompatibility of PLGA-polyhexylthiophene nanofiber scaffolds in a rat model [J]. Biomed Res Int. 2013;2013:390518.CrossRef
33.
go back to reference Zhang HX, Xiao GY, Wang X, et al. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering [J]. J Biomed Mater Res A. 2015;103(10):3250–8.CrossRef Zhang HX, Xiao GY, Wang X, et al. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering [J]. J Biomed Mater Res A. 2015;103(10):3250–8.CrossRef
34.
go back to reference Nava MM, Draghi L, Giordano C, et al. The effect of scaffold pore size in cartilage tissue engineering [J]. J Appl Biomater Funct Mater. 2016;14(3):e223–9.PubMed Nava MM, Draghi L, Giordano C, et al. The effect of scaffold pore size in cartilage tissue engineering [J]. J Appl Biomater Funct Mater. 2016;14(3):e223–9.PubMed
35.
go back to reference Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell. 2006;126(4):677–89.CrossRef Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell. 2006;126(4):677–89.CrossRef
36.
go back to reference Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs [J]. Tissue Eng Part B Rev. 2011;17(4):213–27.CrossRef Little CJ, Bawolin NK, Chen X. Mechanical properties of natural cartilage and tissue-engineered constructs [J]. Tissue Eng Part B Rev. 2011;17(4):213–27.CrossRef
37.
go back to reference Blum MM, Ovaert TC. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue [J]. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4377–83.CrossRef Blum MM, Ovaert TC. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue [J]. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4377–83.CrossRef
Metadata
Title
Design and evaluation of nano-hydroxyapatite/poly(vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid)/nano-hydroxyapatite/poly(vinyl alcohol) scaffolds for cartilage repair
Authors
Weiping Su
Yihe Hu
Min Zeng
Mingqing Li
Shaoru Lin
Yangying Zhou
Jie Xie
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1450-0

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue