Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Hip-TEP | Systematic review

The efficacy and safety of core decompression for the treatment of femoral head necrosis: a systematic review and meta-analysis

Authors: Kun-chi Hua, Xiong-gang Yang, Jiang-tao Feng, Feng Wang, Li Yang, Hao Zhang, Yong-cheng Hu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Core decompression (CD) is an important method for the treatment of osteonecrosis of the femoral head (ONFH). Few articles investigate the influence of core decompression on outcomes of ONFH. This study was carried out to observe the safety and effectiveness of core decompression in the treatment of ONFH.

Methods

A comprehensive literature search of databases including PubMed, Embase, and Cochrane Library was performed to collect the related studies. The medical subject headings used were “femur head necrosis” and “Core decompression.” The relevant words in title or abstract included but not limited to “Osteonecrosis of the Femoral Head,” “femoral head necrosis,” “avascular necrosis of femoral head,” and “ischemic necrosis of femoral head.” The methodological index for nonrandomized studies was adopted for assessing the studies included in this review.

Results

Thirty-two studies included 1865 patients (2441 hips). Twenty-one studies (1301 hips) using Ficat staging standard, 7 studies (338hips) using Association Research Circulation Osseous (ARCO) staging standard, and University of Pennsylvania system for staging avascular necrosis (UPSS) staging criteria for 4 studies (802 hips). All the studies recorded the treatment, 22 studies (1379 hips) were treated with core decompression (CD) alone, and 7 studies (565 hips) were treated with core decompression combined with autologous bone (CD Autologous bone). Nine subjects (497 hips) were treated with core decompression combined with autologous bone marrow (CD Marrow). Twenty-seven studies (2120 hips) documented the number of conversion to total hip replacement (THA), and 26 studies (1752hips) documented the number of radiographic progression (RP). Twenty-one studies recorded the types of complications and the number of cases, a total of 69 cases. The random-effect model was used for meta-analysis, and the results showed that the overall success rate was 65%. The rate of success showed significant difference on the outcomes of different stages. The rate of success, conversion to THA, and radiographic progression showed significant difference on the outcomes of ONFH using different treatments.

Conclusions

Core decompression is an effective and safe method of treating ONFH. The combined use of autologous bone or bone marrow can increase the success rate. For advanced femoral head necrosis, the use of CD should be cautious. High-quality randomized controlled trials and prospective studies will be necessary to clarify the effects of different etiology factors, treatments, and postoperative rehabilitation. Until then, the surgeon can choose core decompression to treat ONFH depending on the patient’s condition.

Level of evidence

I Meta-analysis
Appendix
Available only for authorised users
Literature
1.
go back to reference Lieberman JR, Berry DJ, Aaron RK, et al. Osteonecrosis of the hip: management in the twenty-first century. J Bone Joint Surg (Am Vol). 2002;84(52):337–55. Lieberman JR, Berry DJ, Aaron RK, et al. Osteonecrosis of the hip: management in the twenty-first century. J Bone Joint Surg (Am Vol). 2002;84(52):337–55.
2.
go back to reference Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. J Bone Joint Surg (Am Vol). 2006;88(5):1117–32. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. J Bone Joint Surg (Am Vol). 2006;88(5):1117–32.
3.
go back to reference Mont MA, Ragland PS, Etienne G. Core decompression of the femoral head for osteonecrosis using percutaneous multiple small-diameter drilling. Clin Orthop Relat Res. 2004;429:131–8.CrossRef Mont MA, Ragland PS, Etienne G. Core decompression of the femoral head for osteonecrosis using percutaneous multiple small-diameter drilling. Clin Orthop Relat Res. 2004;429:131–8.CrossRef
4.
go back to reference Zhang HJ, Liu YW, Du Z-Q, et al. Therapeutic effect of minimally invasive decompression combined with impaction bone grafting on osteonecrosis of the femoral head. Eur J Orthop Surg Traumatol. 2013;23(8):913–9.PubMedCrossRef Zhang HJ, Liu YW, Du Z-Q, et al. Therapeutic effect of minimally invasive decompression combined with impaction bone grafting on osteonecrosis of the femoral head. Eur J Orthop Surg Traumatol. 2013;23(8):913–9.PubMedCrossRef
5.
go back to reference Steinberg ME, Larcom PG, Strafford B, et al. Core decompression with bone grafting for osteonecrosis of the femoral head. Clin Orthop Relat Res. 2001;386:71–8.CrossRef Steinberg ME, Larcom PG, Strafford B, et al. Core decompression with bone grafting for osteonecrosis of the femoral head. Clin Orthop Relat Res. 2001;386:71–8.CrossRef
6.
go back to reference Yu X, Zhang D, Chen X, et al. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2017;23(2):1–9. Yu X, Zhang D, Chen X, et al. Effectiveness of various hip preservation treatments for non-traumatic osteonecrosis of the femoral head: a network meta-analysis of randomized controlled trials. J Orthop Sci. 2017;23(2):1–9.
7.
go back to reference Shibing X, Lei Z, Hongting J, et al. Autologous stem cells combined core decompression for treatment of avascular necrosis of the femoral head: a systematic meta-analysis. Biomed Res Int. 2017;2017:1–11. Shibing X, Lei Z, Hongting J, et al. Autologous stem cells combined core decompression for treatment of avascular necrosis of the femoral head: a systematic meta-analysis. Biomed Res Int. 2017;2017:1–11.
8.
go back to reference Gangji V, De Maertelaer V, Hauzeur JP. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone. 2011;49(5):1005–9.PubMedCrossRef Gangji V, De Maertelaer V, Hauzeur JP. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone. 2011;49(5):1005–9.PubMedCrossRef
9.
go back to reference Pepke W, Kasten P, Beckmann NA, et al. Core decompression and autologous bone marrow concentrate for treatment of femoral head osteonecrosis: a randomized prospective study. Orthop Rev (Pavia). 2016;8(1):6162.CrossRef Pepke W, Kasten P, Beckmann NA, et al. Core decompression and autologous bone marrow concentrate for treatment of femoral head osteonecrosis: a randomized prospective study. Orthop Rev (Pavia). 2016;8(1):6162.CrossRef
10.
go back to reference Zhao D, Cui D, Wang B, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50(1):325–30.PubMedCrossRef Zhao D, Cui D, Wang B, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50(1):325–30.PubMedCrossRef
11.
go back to reference Belmar CJ, Steinberg ME, Hartman-Sloan KM. Does pain predict outcome in hips with osteonecrosis? Clin Orthop Relat Res. 2004;425:158–62.CrossRef Belmar CJ, Steinberg ME, Hartman-Sloan KM. Does pain predict outcome in hips with osteonecrosis? Clin Orthop Relat Res. 2004;425:158–62.CrossRef
12.
go back to reference Bozic KJ, Zurakowski D, Thornhill TS. Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am Vol. 1999;81(2):200–9.CrossRef Bozic KJ, Zurakowski D, Thornhill TS. Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am Vol. 1999;81(2):200–9.CrossRef
13.
go back to reference Chotivichit A, Korwutthikulrangsri E, Auewarakul C, et al. Core decompression and concentrated autologous bone marrow injection for treatment of osteonecrosis of the femoral head. J Med Assoc Thai. 2012;95 Suppl 9(supplement 9):S14–20.PubMed Chotivichit A, Korwutthikulrangsri E, Auewarakul C, et al. Core decompression and concentrated autologous bone marrow injection for treatment of osteonecrosis of the femoral head. J Med Assoc Thai. 2012;95 Suppl 9(supplement 9):S14–20.PubMed
14.
go back to reference Chotivichit A, Korwutthikulrangsri E, Pornrattanamaneewong C, et al. Core decompression with bone marrow injection for the treatment of femoral head osteonecrosis. J Med Assoc Thai. 2014;97(Suppl9):S139–43.PubMed Chotivichit A, Korwutthikulrangsri E, Pornrattanamaneewong C, et al. Core decompression with bone marrow injection for the treatment of femoral head osteonecrosis. J Med Assoc Thai. 2014;97(Suppl9):S139–43.PubMed
15.
go back to reference Fairbank AC, Bhatia D, Jinnah RH, et al. Long-term results of core decompression for ischemic necrosis of the femoral head. J Bone Joint Surg Br Vol. 1995;77(1):42–9.CrossRef Fairbank AC, Bhatia D, Jinnah RH, et al. Long-term results of core decompression for ischemic necrosis of the femoral head. J Bone Joint Surg Br Vol. 1995;77(1):42–9.CrossRef
16.
go back to reference Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.CrossRef Hernigou P, Beaujean F. Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop Relat Res. 2002;405:14–23.CrossRef
17.
go back to reference Iorio R, Healy WL, Abramowitz AJ, et al. Clinical outcome and survivorship analysis of core decompression for early osteonecrosis of the femoral head. J Arthroplasty. 1998;13(1):34.PubMedCrossRef Iorio R, Healy WL, Abramowitz AJ, et al. Clinical outcome and survivorship analysis of core decompression for early osteonecrosis of the femoral head. J Arthroplasty. 1998;13(1):34.PubMedCrossRef
18.
go back to reference Lausten GS, Mathiesen B. Core decompression for femoral head necrosis: prospective study of 28 patients. Acta Orthop Scand. 1991;61(6):507–11.CrossRef Lausten GS, Mathiesen B. Core decompression for femoral head necrosis: prospective study of 28 patients. Acta Orthop Scand. 1991;61(6):507–11.CrossRef
19.
go back to reference Learmonth ID, Maloon S, Dall G. Core decompression for early atraumatic osteonecrosis of the femoral head. J Bone Joint Surg Br Vol. 1990;72-B(3):387–90.CrossRef Learmonth ID, Maloon S, Dall G. Core decompression for early atraumatic osteonecrosis of the femoral head. J Bone Joint Surg Br Vol. 1990;72-B(3):387–90.CrossRef
20.
go back to reference Markel DC, Miskovsky C, Sculco TP, et al. Core decompression for osteonecrosis of the femoral head. Clin Orthop Relat Res. 1996;323(323):226–33.CrossRef Markel DC, Miskovsky C, Sculco TP, et al. Core decompression for osteonecrosis of the femoral head. Clin Orthop Relat Res. 1996;323(323):226–33.CrossRef
21.
go back to reference Mont MA, Fairbank AC, et al. Core decompression for osteonecrosis of the femoral head in systemic lupus erythematosus. Clin Orthop Relat Res. 1997;334(334):91–7. Mont MA, Fairbank AC, et al. Core decompression for osteonecrosis of the femoral head in systemic lupus erythematosus. Clin Orthop Relat Res. 1997;334(334):91–7.
22.
go back to reference Powell ET, Lanzer WL, Mankey MG. Core decompression for early osteonecrosis of the hip in high-risk patients. Clin Orthop Relat Res. 1997;335(335):181–9.CrossRef Powell ET, Lanzer WL, Mankey MG. Core decompression for early osteonecrosis of the hip in high-risk patients. Clin Orthop Relat Res. 1997;335(335):181–9.CrossRef
23.
go back to reference Smith SW, Fehring TK, Griffin WL, et al. Core decompression of the Osteonecrotic femoral head. J Bone Joint Surg. 1995;77(5):674–80.PubMedCrossRef Smith SW, Fehring TK, Griffin WL, et al. Core decompression of the Osteonecrotic femoral head. J Bone Joint Surg. 1995;77(5):674–80.PubMedCrossRef
24.
go back to reference Tooke SMT, Nugent PJ, Bassett LW, et al. Results of core decompression for femoral head osteonecrosis. Clin Orthop Relat Res. 1988;NA(228):99–104. Tooke SMT, Nugent PJ, Bassett LW, et al. Results of core decompression for femoral head osteonecrosis. Clin Orthop Relat Res. 1988;NA(228):99–104.
25.
go back to reference Warner JJP, Philip JH, Brodsky GL, et al. Studies of nontraumatic osteonecrosis: the role of core decompression in the treatment of nontraumatic osteonecrosis of the femoral head. Clin Orthop Relat Res. 1987;225(225):104–27. Warner JJP, Philip JH, Brodsky GL, et al. Studies of nontraumatic osteonecrosis: the role of core decompression in the treatment of nontraumatic osteonecrosis of the femoral head. Clin Orthop Relat Res. 1987;225(225):104–27.
26.
go back to reference Feng JW, Hang DW, Chuan MZ, et al. Three-tunnels core decompression with implantation of bone marrow stromal cells (bMSCs) and decalcified bone matrix (DBM) for the treatment of early femoral head necrosis. China J Orthop Trauma. 2008;21(10):776–8. Feng JW, Hang DW, Chuan MZ, et al. Three-tunnels core decompression with implantation of bone marrow stromal cells (bMSCs) and decalcified bone matrix (DBM) for the treatment of early femoral head necrosis. China J Orthop Trauma. 2008;21(10):776–8.
27.
go back to reference Bin C, Hui LY, Ying W, et al. Clinical application of minimally invasive core decompression combined with impaction bone grafting to the treatment of femoral head necrosis. China J Orthop Trauma. 2010;23(2):111–3. Bin C, Hui LY, Ying W, et al. Clinical application of minimally invasive core decompression combined with impaction bone grafting to the treatment of femoral head necrosis. China J Orthop Trauma. 2010;23(2):111–3.
28.
go back to reference Yaping L, Qingan Z, Haiping X. Treatment for osteonecrosis of femoral head with morselized periosteum and bone grafting after arthroscopic core decompression. Chin J Bone Joint Inj. 2007;22(11):902–4. Yaping L, Qingan Z, Haiping X. Treatment for osteonecrosis of femoral head with morselized periosteum and bone grafting after arthroscopic core decompression. Chin J Bone Joint Inj. 2007;22(11):902–4.
29.
go back to reference Jing Y, Pengde K, Bin S. Treatment of early stage osteonecrosis of the femoral head with multiple small-diameter drilling core decompression. Chin J Orthop. 2010;30(1):58–61. Jing Y, Pengde K, Bin S. Treatment of early stage osteonecrosis of the femoral head with multiple small-diameter drilling core decompression. Chin J Orthop. 2010;30(1):58–61.
30.
go back to reference Weihua X, Shuhua Y, Baoxing L, et al. Allogeneic cortical bone cage support combining with autologous cancellous bone grafting for managing femoral head necrosis. Chin J Reparative Reconstr Surg. 2009;23(5):527–9. Weihua X, Shuhua Y, Baoxing L, et al. Allogeneic cortical bone cage support combining with autologous cancellous bone grafting for managing femoral head necrosis. Chin J Reparative Reconstr Surg. 2009;23(5):527–9.
31.
go back to reference Yong Z, Songti C. Closed core decompression for aseptic necrosis of femoral head: 22 cases of clinical summary. Chin J Inj Repair Wound Healing. 2011;6(3):427–8. Yong Z, Songti C. Closed core decompression for aseptic necrosis of femoral head: 22 cases of clinical summary. Chin J Inj Repair Wound Healing. 2011;6(3):427–8.
32.
go back to reference Chen XT, Tan XY, Liu YW, et al. Application of minimally invasive, decompression bone graft implantation combined with metal trabecular bone reconstruction system for early stage osteonecrosis of femoral head. China J Orthop Traumatol. 2015;28(5):422–5. Chen XT, Tan XY, Liu YW, et al. Application of minimally invasive, decompression bone graft implantation combined with metal trabecular bone reconstruction system for early stage osteonecrosis of femoral head. China J Orthop Traumatol. 2015;28(5):422–5.
33.
go back to reference Lieberman JR, Conduah A, Urist MR. Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clin Orthop Relat Res. 2004;429:139–45.CrossRef Lieberman JR, Conduah A, Urist MR. Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clin Orthop Relat Res. 2004;429:139–45.CrossRef
34.
go back to reference Song WS, Yoo JJ, Kim YM, et al. Results of multiple drilling compared with those of conventional methods of core decompression. Clin Orthop Relat Res. 2007;454:139–46.PubMedCrossRef Song WS, Yoo JJ, Kim YM, et al. Results of multiple drilling compared with those of conventional methods of core decompression. Clin Orthop Relat Res. 2007;454:139–46.PubMedCrossRef
35.
go back to reference Wang BL, Sun W, Shi ZC, et al. Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg. 2010;130(7):859–65.PubMedCrossRef Wang BL, Sun W, Shi ZC, et al. Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg. 2010;130(7):859–65.PubMedCrossRef
36.
go back to reference Naiqiang Z, Yongxian W, Xiaobo L, et al. Comprehensive management of early stage avascular necrosis of femoral head by arthroscopic minimally invasive surgery. Chin J Reparative Reconstr Surg. 2012;26(9):1041–4. Naiqiang Z, Yongxian W, Xiaobo L, et al. Comprehensive management of early stage avascular necrosis of femoral head by arthroscopic minimally invasive surgery. Chin J Reparative Reconstr Surg. 2012;26(9):1041–4.
37.
go back to reference Hongjun Z, Shutu G, Yongcheng H. Core decompression combined with implantation of autologous bone marrow stem cells for early stage osteonecrosis of the femoral head: a primary report. Chin J Orthop. 2010;30(1):48–52. Hongjun Z, Shutu G, Yongcheng H. Core decompression combined with implantation of autologous bone marrow stem cells for early stage osteonecrosis of the femoral head: a primary report. Chin J Orthop. 2010;30(1):48–52.
38.
go back to reference Guo HS, Tian YJ, Liu G, et al. Arthroscopy-guided core decompression and bone grafting combined with selective arterial infusion for treatment of early stage avascular necrosis of femoral head. China J Orthop Trauma. 2018;31(1):56–60. Guo HS, Tian YJ, Liu G, et al. Arthroscopy-guided core decompression and bone grafting combined with selective arterial infusion for treatment of early stage avascular necrosis of femoral head. China J Orthop Trauma. 2018;31(1):56–60.
39.
go back to reference Rajagopal M, Balch Samora J, Ellis TJ. Efficacy of core decompression as treatment for osteonecrosis of the hip: a systematic review. Hip Int. 2012;22(5):489–93.PubMedCrossRef Rajagopal M, Balch Samora J, Ellis TJ. Efficacy of core decompression as treatment for osteonecrosis of the hip: a systematic review. Hip Int. 2012;22(5):489–93.PubMedCrossRef
40.
go back to reference Wei BF, Ge XH. Treatment of osteonecrosis of the femoral head with core decompression and bone grafting. Hip Int. 2011;21(2):206–10.PubMedCrossRef Wei BF, Ge XH. Treatment of osteonecrosis of the femoral head with core decompression and bone grafting. Hip Int. 2011;21(2):206–10.PubMedCrossRef
41.
go back to reference Zhang G, Qin L, Sheng H, et al. A novel semisynthesized small molecule icaritin reduces incidence of steroid-associated osteonecrosis with inhibition of both thrombosis and lipid-deposition in a dose-dependent manner. Bone. 2009;44(2):345–56.PubMedCrossRef Zhang G, Qin L, Sheng H, et al. A novel semisynthesized small molecule icaritin reduces incidence of steroid-associated osteonecrosis with inhibition of both thrombosis and lipid-deposition in a dose-dependent manner. Bone. 2009;44(2):345–56.PubMedCrossRef
42.
go back to reference Pengde K, Fuxing P, Bin S, et al. Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Joint Bone Spine. 2008;75(6):696–701.PubMedCrossRef Pengde K, Fuxing P, Bin S, et al. Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Joint Bone Spine. 2008;75(6):696–701.PubMedCrossRef
43.
go back to reference Vande Berg BC, Gilon R, Malghem J, et al. Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: a longitudinal study by MR imaging. Eur J Radiol. 2006;58(3):444–9.PubMedCrossRef Vande Berg BC, Gilon R, Malghem J, et al. Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: a longitudinal study by MR imaging. Eur J Radiol. 2006;58(3):444–9.PubMedCrossRef
44.
go back to reference Qin L, Zhang G, Sheng H, et al. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone. Bone. 2006;39(4):863–71.PubMedCrossRef Qin L, Zhang G, Sheng H, et al. Multiple bioimaging modalities in evaluation of an experimental osteonecrosis induced by a combination of lipopolysaccharide and methylprednisolone. Bone. 2006;39(4):863–71.PubMedCrossRef
45.
go back to reference Kitajima M, Shigematsu M, Ogawa K, et al. Effects of glucocorticoid on adipocyte size in human bone marrow. Med Mol Morphol. 2007;40(3):150–6.PubMedCrossRef Kitajima M, Shigematsu M, Ogawa K, et al. Effects of glucocorticoid on adipocyte size in human bone marrow. Med Mol Morphol. 2007;40(3):150–6.PubMedCrossRef
46.
go back to reference Lee MS, Hsieh PH, Chang YH, et al. Elevated intraosseous pressure in the intertrochanteric region is associated with poorer results in osteonecrosis of the femoral head treated by multiple drilling. J Bone Joint Surg Br Vol. 2008;90-B(7):852–7.CrossRef Lee MS, Hsieh PH, Chang YH, et al. Elevated intraosseous pressure in the intertrochanteric region is associated with poorer results in osteonecrosis of the femoral head treated by multiple drilling. J Bone Joint Surg Br Vol. 2008;90-B(7):852–7.CrossRef
47.
go back to reference Marker DR, Seyler TM, Ulrich SD, et al. Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res. 2008;466(5):1093–103.PubMedPubMedCentralCrossRef Marker DR, Seyler TM, Ulrich SD, et al. Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res. 2008;466(5):1093–103.PubMedPubMedCentralCrossRef
48.
go back to reference Kang P, Shen B, Yang J, et al. Repairing defect and preventing collapse of canine femoral head using titanium implant enhanced by autogenous bone graft and rhBMP-2. Connect Tissue Res. 2007;48(4):171–9.PubMedCrossRef Kang P, Shen B, Yang J, et al. Repairing defect and preventing collapse of canine femoral head using titanium implant enhanced by autogenous bone graft and rhBMP-2. Connect Tissue Res. 2007;48(4):171–9.PubMedCrossRef
49.
go back to reference Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone. 1996;19(1):1S–12S.PubMedCrossRef Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone. 1996;19(1):1S–12S.PubMedCrossRef
50.
go back to reference Seebach C, Schultheiss J, Wilhelm K, et al. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41(7):731–8.PubMedCrossRef Seebach C, Schultheiss J, Wilhelm K, et al. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41(7):731–8.PubMedCrossRef
51.
go back to reference Ignjatovic N, Ninkov P, Ajdukovic Z, et al. Biphasic calcium phosphate coated with poly-d,l-lactide-co-glycolide biomaterial as a bone substitute. J Eur Ceram Soc. 2007;27(2–3):1589–94.CrossRef Ignjatovic N, Ninkov P, Ajdukovic Z, et al. Biphasic calcium phosphate coated with poly-d,l-lactide-co-glycolide biomaterial as a bone substitute. J Eur Ceram Soc. 2007;27(2–3):1589–94.CrossRef
52.
go back to reference Smith CA, Richardson SM, Eagle MJ, et al. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. J Tissue Eng Regen Med. 2015;9(5):595–604.PubMedCrossRef Smith CA, Richardson SM, Eagle MJ, et al. The use of a novel bone allograft wash process to generate a biocompatible, mechanically stable and osteoinductive biological scaffold for use in bone tissue engineering. J Tissue Eng Regen Med. 2015;9(5):595–604.PubMedCrossRef
53.
go back to reference Akkus O, Rimnac CM. Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res. 2001;19(5):927–34.PubMedCrossRef Akkus O, Rimnac CM. Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res. 2001;19(5):927–34.PubMedCrossRef
Metadata
Title
The efficacy and safety of core decompression for the treatment of femoral head necrosis: a systematic review and meta-analysis
Authors
Kun-chi Hua
Xiong-gang Yang
Jiang-tao Feng
Feng Wang
Li Yang
Hao Zhang
Yong-cheng Hu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1359-7

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue