Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Bone Defect | Research article

Revision total knee arthroplasty (TKA): mid-term outcomes and bone loss/quality evaluation and treatment

Authors: Federica Rosso, Umberto Cottino, Federico Dettoni, Matteo Bruzzone, Davide Edoardo Bonasia, Roberto Rossi

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Revision total knee arthroplasty (rTKA) is a demanding procedure, with a high complication and failure rate and a high rate of bone losses and poor bone quality. Different classifications for bone losses have been proposed, but they do not consider bone quality, which may affect implant fixation. The aim of this study is to describe the outcomes of a consecutive series of rTKA. Furthermore, a modified bone loss classification will be proposed based also on bone quality. Finally, the association between radiolucent line (RLL) development and different risk factors will be evaluated.

Methods

All the patients who underwent rTKA between 2008 and 2016 in the same institution were included. rTKAs were performed by the same surgeon according to the three-step technique. Bone losses were classified according to the proposed classification, including bone quality evaluation. The Knee Scoring System (KSS), the Hospital for Special Surgery Knee Score (HSS), and the SF-12 were used for the clinical evaluation. Radiological evaluation was performed according to the Knee Society Roentgenographic Evaluation System. Different possible risk factors (i.e., gender, age, amount of bone losses) associated to RLL development were identified, and this association was evaluated using logistic regression.

Results

Fifty-one patients (53 knees) were included (60.8% female, average age 71.5 years). The average follow-up was 56.6 months (range 24–182). The most frequent cause of failure was aseptic loosening (41.5%). 18.9% of the cases demonstrated poor bone quality. Bone losses were treated according to the proposed algorithm. In all the cases, there was a significant improvement in all the scores (P < 0.05). The average post-operative range of motion was 110.5° (SD 10.7). At the radiological evaluation, all the implants resulted well aligned, with 15.1% of non-progressive RLL. There were 2 failures, with a cumulative survivorship of 92.1% at the last follow-up (SD 5.3%). At the logistic regression, none of the evaluated variables resulted associated to RLL development.

Conclusion

rTKA is a demanding procedure, and adequate treatment of bone losses is mandatory to achieve good results. However, also bone quality should be taken into consideration when approaching bone losses, and the proposed classification may need surgeons after an adequate validation.

Level of evidence

Level IV
Literature
1.
go back to reference Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S. Projected increase in total knee arthroplasty in the United States - an alternative projection model. Osteoarthr Cartil. 2017;25(11):1797–803.PubMedCrossRef Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S. Projected increase in total knee arthroplasty in the United States - an alternative projection model. Osteoarthr Cartil. 2017;25(11):1797–803.PubMedCrossRef
2.
go back to reference Hamilton DF, Howie CR, Burnett R, Simpson AHRW, Patton JT. Dealing with the predicted increase in demand for revision total knee arthroplasty: challenges, risks and opportunities. Bone Joint J. 2015;97-B(6):723–8.PubMedCrossRef Hamilton DF, Howie CR, Burnett R, Simpson AHRW, Patton JT. Dealing with the predicted increase in demand for revision total knee arthroplasty: challenges, risks and opportunities. Bone Joint J. 2015;97-B(6):723–8.PubMedCrossRef
3.
go back to reference Meehan JP, Danielsen B, Kim SH, Jamali AA, White RH. Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. J Bone Joint Surg Am. 2014;96(7):529–35.PubMedCrossRef Meehan JP, Danielsen B, Kim SH, Jamali AA, White RH. Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. J Bone Joint Surg Am. 2014;96(7):529–35.PubMedCrossRef
4.
go back to reference Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.PubMed Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.PubMed
5.
go back to reference Bae DK, Song SJ, Heo DB, Lee SH, Song WJ. Long-term survival rate of implants and modes of failure after revision total knee arthroplasty by a single surgeon. J Arthroplasty. 2013;28(7):1130–4.PubMedCrossRef Bae DK, Song SJ, Heo DB, Lee SH, Song WJ. Long-term survival rate of implants and modes of failure after revision total knee arthroplasty by a single surgeon. J Arthroplasty. 2013;28(7):1130–4.PubMedCrossRef
6.
go back to reference Morgan-Jones R, Oussedik SIS, Graichen H, Haddad FS. Zonal fixation in revision total knee arthroplasty. Bone Joint J. 2015;97-B(2):147–9.PubMedCrossRef Morgan-Jones R, Oussedik SIS, Graichen H, Haddad FS. Zonal fixation in revision total knee arthroplasty. Bone Joint J. 2015;97-B(2):147–9.PubMedCrossRef
7.
go back to reference Engh GA, Ammeen DJ. Bone loss with revision total knee arthroplasty: defect classification and alternatives for reconstruction. Instr Course Lect. 1999;48:167–75.PubMed Engh GA, Ammeen DJ. Bone loss with revision total knee arthroplasty: defect classification and alternatives for reconstruction. Instr Course Lect. 1999;48:167–75.PubMed
8.
go back to reference Sheth NP, Bonadio MB, Demange MK. Bone loss in revision total knee arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2017;25(5):348–57.PubMedCrossRef Sheth NP, Bonadio MB, Demange MK. Bone loss in revision total knee arthroplasty: evaluation and management. J Am Acad Orthop Surg. 2017;25(5):348–57.PubMedCrossRef
9.
go back to reference Sculco PK, Abdel MP, Hanssen AD, Lewallen DG. The management of bone loss in revision total knee arthroplasty: rebuild, reinforce, and augment. Bone Joint J. 2016;98-B(1 Suppl A):120–4.PubMedCrossRef Sculco PK, Abdel MP, Hanssen AD, Lewallen DG. The management of bone loss in revision total knee arthroplasty: rebuild, reinforce, and augment. Bone Joint J. 2016;98-B(1 Suppl A):120–4.PubMedCrossRef
10.
go back to reference Huten D. Femorotibial bone loss during revision total knee arthroplasty. Orthop Traumatol Surg Res OTSR. 2013;99(1 Suppl):S22–33.PubMedCrossRef Huten D. Femorotibial bone loss during revision total knee arthroplasty. Orthop Traumatol Surg Res OTSR. 2013;99(1 Suppl):S22–33.PubMedCrossRef
11.
go back to reference Bauman RD, Lewallen DG, Hanssen AD. Limitations of structural allograft in revision total knee arthroplasty. Clin Orthop. 2009;467(3):818–24.PubMedCrossRef Bauman RD, Lewallen DG, Hanssen AD. Limitations of structural allograft in revision total knee arthroplasty. Clin Orthop. 2009;467(3):818–24.PubMedCrossRef
12.
go back to reference Girerd D, Parratte S, Lunebourg A, Boureau F, Ollivier M, Pasquier G, et al. Total knee arthroplasty revision with trabecular tantalum cones: Preliminary retrospective study of 51 patients from two centres with a minimal 2-year follow-up. Orthop Traumatol Surg Res OTSR. 2016;102(4):429–33.PubMedCrossRef Girerd D, Parratte S, Lunebourg A, Boureau F, Ollivier M, Pasquier G, et al. Total knee arthroplasty revision with trabecular tantalum cones: Preliminary retrospective study of 51 patients from two centres with a minimal 2-year follow-up. Orthop Traumatol Surg Res OTSR. 2016;102(4):429–33.PubMedCrossRef
13.
go back to reference Potter GD, Abdel MP, Lewallen DG, Hanssen AD. Midterm results of porous tantalum femoral cones in revision total knee arthroplasty. J Bone Joint Surg Am. 2016;98(15):1286–91.PubMedCrossRef Potter GD, Abdel MP, Lewallen DG, Hanssen AD. Midterm results of porous tantalum femoral cones in revision total knee arthroplasty. J Bone Joint Surg Am. 2016;98(15):1286–91.PubMedCrossRef
14.
go back to reference Kim EG, Patel NK, Chughtai M, Elmallah RDK, Delanois RE, Harwin SF, et al. Tantalum cones in revision total knee arthroplasty. J Knee Surg. 2016;29(8):621–6.PubMedCrossRef Kim EG, Patel NK, Chughtai M, Elmallah RDK, Delanois RE, Harwin SF, et al. Tantalum cones in revision total knee arthroplasty. J Knee Surg. 2016;29(8):621–6.PubMedCrossRef
15.
go back to reference Parvizi J, Gehrke T, Chen AF. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Joint J. 2013;95-B(11):1450–2.PubMedCrossRef Parvizi J, Gehrke T, Chen AF. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Joint J. 2013;95-B(11):1450–2.PubMedCrossRef
16.
go back to reference Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309–14 e2.CrossRef Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309–14 e2.CrossRef
17.
go back to reference Dennis DA, Berry DJ, Engh G, Fehring T, SJ MD, Rosenberg AG, et al. Revision total knee arthroplasty. J Am Acad Orthop Surg. 2008;16(8):442–54.PubMedCrossRef Dennis DA, Berry DJ, Engh G, Fehring T, SJ MD, Rosenberg AG, et al. Revision total knee arthroplasty. J Am Acad Orthop Surg. 2008;16(8):442–54.PubMedCrossRef
18.
go back to reference Cottino U, Rosso F, Pastrone A, Dettoni F, Rossi R, Bruzzone M. Painful knee arthroplasty: current practice. Curr Rev Musculoskelet Med. 2015;8(4):398–406.PubMedPubMedCentralCrossRef Cottino U, Rosso F, Pastrone A, Dettoni F, Rossi R, Bruzzone M. Painful knee arthroplasty: current practice. Curr Rev Musculoskelet Med. 2015;8(4):398–406.PubMedPubMedCentralCrossRef
19.
go back to reference Christensen CP, Crawford JJ, Olin MD, Vail TP. Revision of the stiff total knee arthroplasty. J Arthroplasty. 2002;17(4):409–15.PubMedCrossRef Christensen CP, Crawford JJ, Olin MD, Vail TP. Revision of the stiff total knee arthroplasty. J Arthroplasty. 2002;17(4):409–15.PubMedCrossRef
21.
go back to reference Kouk S, Rathod PA, Maheshwari AV, Deshmukh AJ. Rotating hinge prosthesis for complex revision total knee arthroplasty: a review of the literature. J Clin Orthop Trauma. 2018;9(1):29–33.PubMedCrossRef Kouk S, Rathod PA, Maheshwari AV, Deshmukh AJ. Rotating hinge prosthesis for complex revision total knee arthroplasty: a review of the literature. J Clin Orthop Trauma. 2018;9(1):29–33.PubMedCrossRef
22.
go back to reference Mazzucchelli L, Rosso F, Marmotti A, Bonasia DE, Bruzzone M, Rossi R. The use of spacers (static and mobile) in infection knee arthroplasty. Curr Rev Musculoskelet Med. 2015;8(4):373–82.PubMedPubMedCentralCrossRef Mazzucchelli L, Rosso F, Marmotti A, Bonasia DE, Bruzzone M, Rossi R. The use of spacers (static and mobile) in infection knee arthroplasty. Curr Rev Musculoskelet Med. 2015;8(4):373–82.PubMedPubMedCentralCrossRef
23.
go back to reference Vince KG, Droll K, Chivas D. New concepts in revision total knee arthroplasty. J Surg Orthop Adv. 2008;17(3):165–72.PubMed Vince KG, Droll K, Chivas D. New concepts in revision total knee arthroplasty. J Surg Orthop Adv. 2008;17(3):165–72.PubMed
24.
25.
go back to reference Irrgang JJ, Anderson AF. Development and validation of health-related quality of life measures for the knee. Clin Orthop. 2002;402:95–109.CrossRef Irrgang JJ, Anderson AF. Development and validation of health-related quality of life measures for the knee. Clin Orthop. 2002;402:95–109.CrossRef
26.
go back to reference Jenkinson C, Layte R, Jenkinson D, Lawrence K, Petersen S, Paice C, et al. A shorter form health survey: can the SF-12 replicate results from the SF-36 in longitudinal studies? J Public Health Med. 1997;19(2):179–86.PubMedCrossRef Jenkinson C, Layte R, Jenkinson D, Lawrence K, Petersen S, Paice C, et al. A shorter form health survey: can the SF-12 replicate results from the SF-36 in longitudinal studies? J Public Health Med. 1997;19(2):179–86.PubMedCrossRef
27.
go back to reference Ewald FC. The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop. 1989;248:9–12. Ewald FC. The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop. 1989;248:9–12.
28.
go back to reference Nam D, Abdel MP, Cross MB, LE LM, Reinhardt KR, BA MA, et al. The management of extensor mechanism complications in total knee arthroplasty. AAOS exhibit selection. J Bone Joint Surg Am. 2014;96(6):e47.PubMedCrossRef Nam D, Abdel MP, Cross MB, LE LM, Reinhardt KR, BA MA, et al. The management of extensor mechanism complications in total knee arthroplasty. AAOS exhibit selection. J Bone Joint Surg Am. 2014;96(6):e47.PubMedCrossRef
29.
go back to reference Siqueira MBP, Klika AK, Higuera CA, Barsoum WK. Modes of failure of total knee arthroplasty: registries and realities. J Knee Surg. 2015;28(2):127–38.PubMedCrossRef Siqueira MBP, Klika AK, Higuera CA, Barsoum WK. Modes of failure of total knee arthroplasty: registries and realities. J Knee Surg. 2015;28(2):127–38.PubMedCrossRef
30.
31.
go back to reference Lee D-H, Lee S-H, Song E-K, Seon J-K, Lim H-A, Yang H-Y. Causes and clinical outcomes of revision total knee arthroplasty. Knee Surg Relat Res. 2017;29(2):104–9.PubMedPubMedCentralCrossRef Lee D-H, Lee S-H, Song E-K, Seon J-K, Lim H-A, Yang H-Y. Causes and clinical outcomes of revision total knee arthroplasty. Knee Surg Relat Res. 2017;29(2):104–9.PubMedPubMedCentralCrossRef
33.
go back to reference Bistolfi A, Massazza G, Rosso F, Crova M. Rotating-hinge total knee for revision total knee arthroplasty. Orthopedics. 2012;35(3):e325–30.PubMed Bistolfi A, Massazza G, Rosso F, Crova M. Rotating-hinge total knee for revision total knee arthroplasty. Orthopedics. 2012;35(3):e325–30.PubMed
34.
go back to reference Stockwell KD, Malleck S, Gascoyne TC, Turgeon TR. Clinical and radiographic outcomes of a hybrid fixation revision total knee arthroplasty system at short to mid-term follow-up. Knee. 2019;26(1):240–9.PubMedCrossRef Stockwell KD, Malleck S, Gascoyne TC, Turgeon TR. Clinical and radiographic outcomes of a hybrid fixation revision total knee arthroplasty system at short to mid-term follow-up. Knee. 2019;26(1):240–9.PubMedCrossRef
35.
go back to reference Cawley DT, Kelly N, Simpkin A, Shannon FJ, McGarry JP. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia. Clin Biomech Bristol Avon. 2012;27(4):390–7.CrossRef Cawley DT, Kelly N, Simpkin A, Shannon FJ, McGarry JP. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia. Clin Biomech Bristol Avon. 2012;27(4):390–7.CrossRef
36.
go back to reference Lee JK, Choi CH. Management of tibial bone defects with metal augmentation in primary total knee replacement: a minimum five-year review. J Bone Joint Surg Br. 2011;93(11):1493–6.PubMedCrossRef Lee JK, Choi CH. Management of tibial bone defects with metal augmentation in primary total knee replacement: a minimum five-year review. J Bone Joint Surg Br. 2011;93(11):1493–6.PubMedCrossRef
37.
go back to reference Fehring TK, Peindl RD, Humble RS, Harrow ME, Frick SL. Modular tibial augmentations in total knee arthroplasty. Clin Orthop. 1996;327:207–17.CrossRef Fehring TK, Peindl RD, Humble RS, Harrow ME, Frick SL. Modular tibial augmentations in total knee arthroplasty. Clin Orthop. 1996;327:207–17.CrossRef
38.
go back to reference Tsukada S, Wakui M, Matsueda M. Metal block augmentation for bone defects of the medial tibia during primary total knee arthroplasty. J Orthop Surg. 2013;8:36.CrossRef Tsukada S, Wakui M, Matsueda M. Metal block augmentation for bone defects of the medial tibia during primary total knee arthroplasty. J Orthop Surg. 2013;8:36.CrossRef
39.
go back to reference Kim HJ, Lee O-S, Lee SH, Lee YS. Comparative analysis between cone and sleeve in managing severe bone defect during revision total knee arthroplasty: a systematic review and meta-analysis. J Knee Surg. 2018;31(7):677–85.PubMedCrossRef Kim HJ, Lee O-S, Lee SH, Lee YS. Comparative analysis between cone and sleeve in managing severe bone defect during revision total knee arthroplasty: a systematic review and meta-analysis. J Knee Surg. 2018;31(7):677–85.PubMedCrossRef
40.
go back to reference Boureau F, Putman S, Arnould A, Dereudre G, Migaud H, Pasquier G. Tantalum cones and bone defects in revision total knee arthroplasty. Orthop Traumatol Surg Res OTSR. 2015;101(2):251–5.PubMedCrossRef Boureau F, Putman S, Arnould A, Dereudre G, Migaud H, Pasquier G. Tantalum cones and bone defects in revision total knee arthroplasty. Orthop Traumatol Surg Res OTSR. 2015;101(2):251–5.PubMedCrossRef
41.
go back to reference Wauthle R, van der Stok J, Amin Yavari S, Van Humbeeck J, Kruth J-P, Zadpoor AA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217–25.PubMedCrossRef Wauthle R, van der Stok J, Amin Yavari S, Van Humbeeck J, Kruth J-P, Zadpoor AA, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217–25.PubMedCrossRef
42.
go back to reference Faizan A, Bhowmik-Stoker M, Alipit V, Kirk AE, Krebs VE, Harwin SF, et al. Development and verification of novel porous titanium metaphyseal cones for revision total knee arthroplasty. J Arthroplasty. 2017;32(6):1946–53.PubMedCrossRef Faizan A, Bhowmik-Stoker M, Alipit V, Kirk AE, Krebs VE, Harwin SF, et al. Development and verification of novel porous titanium metaphyseal cones for revision total knee arthroplasty. J Arthroplasty. 2017;32(6):1946–53.PubMedCrossRef
43.
go back to reference Mutsuzaki H, Watanabe A, Kinugasa T, Ikeda K. Radiolucent lines are decreased at 3 years following total knee arthroplasty using trabecular metal tibial components. J Int Med Res. 2018;46(5):1919–27.PubMedPubMedCentralCrossRef Mutsuzaki H, Watanabe A, Kinugasa T, Ikeda K. Radiolucent lines are decreased at 3 years following total knee arthroplasty using trabecular metal tibial components. J Int Med Res. 2018;46(5):1919–27.PubMedPubMedCentralCrossRef
44.
go back to reference Quilez MP, Seral B, Pérez MA. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: a comparison of different implant systems. PloS One. 2017;12(9):e0184361.PubMedPubMedCentralCrossRef Quilez MP, Seral B, Pérez MA. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: a comparison of different implant systems. PloS One. 2017;12(9):e0184361.PubMedPubMedCentralCrossRef
45.
go back to reference Bédard M, Cabrejo-Jones K, Angers M, Pelletier-Roy R, Pelet S. The effect of porous tantalum cones on mechanical alignment and canal-fill ratio in revision total knee arthroplasty performed with uncemented stems. J Arthroplasty. 2015;30(11):1995–8.PubMedCrossRef Bédard M, Cabrejo-Jones K, Angers M, Pelletier-Roy R, Pelet S. The effect of porous tantalum cones on mechanical alignment and canal-fill ratio in revision total knee arthroplasty performed with uncemented stems. J Arthroplasty. 2015;30(11):1995–8.PubMedCrossRef
Metadata
Title
Revision total knee arthroplasty (TKA): mid-term outcomes and bone loss/quality evaluation and treatment
Authors
Federica Rosso
Umberto Cottino
Federico Dettoni
Matteo Bruzzone
Davide Edoardo Bonasia
Roberto Rossi
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Bone Defect
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1328-1

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue