Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Hip Dysplasia | Research article

Accuracy and practicability of a patient-specific guide using acetabular superolateral rim during THA in Crowe II/III DDH patients: a retrospective study

Authors: Chenggong Wang, Han Xiao, Weiwei Yang, Long Wang, Yihe Hu, Hua Liu, Da Zhong

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

It is challenging to create an ideal artificial acetabulum during total hip arthroplasty (THA) in adult DDH. Our team developed a new patient-specific instrument (PSI) that uses the superolateral rim of the acetabulum as a positioning mark to assist in the production of an artificial acetabulum in adult Crowe II/III DDH patients. The purpose of this retrospective study is to verify whether this new PSI can be used to implement the preoperative plan accurately and quickly to create an ideal artificial acetabulum during THA in adult Crowe II/III DDH patients.

Methods

We selected suitable adult Crowe II/III DDH patients from the registration system for artificial joint surgery at our hospital during April 2016 to March 2018 who underwent THA assisted by a PSI using the superolateral rim of the acetabulum as a positioning mark. We retrospectively analyzed data, including preoperative and postoperative anteversion, inclination, postoperative bilateral rotator center discrepancy (BRCD), surgery time, and the incidence of neurovascular injury. All patients underwent follow-up, and their Harris hip score (HHS) and X-ray data were recorded. Then, we performed statistical analyses on the data described above.

Results

A total of 20 hip surgeries from 17 patients were included in our study. All patients underwent a successful operation assisted by the PSI. The mean anteversion of the cup in our preoperative plan was 15.1° (range, 10.0° to 20.0°), while the mean postoperative anteversion of the cup was 15.3° (range, 7.0° to 28.6°). The mean inclination of the cup in our preoperative plan was 44.7° (range, 40.0° to 50.0°), while the mean postoperative inclination of the cup was 45.6° (range, 35.0° to 57.6°). Paired-samples t test revealed no significant differences in anteversion and inclination between pre- and postoperation times (P > 0.05). The mean BRCD was 3.38 ± 3.0 mm (range, 0.5 to 11.0 mm). The average operation time was 105.1 ± 15.4 min, and no patients had neurovascular injury complications. All patients’ acetabular components appeared clinically and radiologically stable after surgery. The mean HHS values were significantly improved at 12 weeks (P < 0.05) and 24 weeks (P < 0.05) postoperatively compared to the preoperative mean scores.

Conclusions

The new PSI is accurate and practical to create an ideal artificial acetabulum during THA in adult Crowe II/III DDH patients.
Literature
1.
go back to reference Schofer MD, Pressel T, Schmitt J, Heyse TJ, Boudriot U. Reconstruction of the acetabulum in THA using femoral head autografts in developmental dysplasia of the hip. J Orthop Surg Res. 2011;6:32.PubMedPubMedCentralCrossRef Schofer MD, Pressel T, Schmitt J, Heyse TJ, Boudriot U. Reconstruction of the acetabulum in THA using femoral head autografts in developmental dysplasia of the hip. J Orthop Surg Res. 2011;6:32.PubMedPubMedCentralCrossRef
2.
go back to reference Hitz OF, Flecher X, Parratte S, Ollivier M, Argenson JN. Minimum 10-year outcome of one-stage total hip arthroplasty without subtrochanteric osteotomy using a cementless custom stem for Crowe III and IV hip dislocation. J Arthroplast. 2018;33(7):2197–202.CrossRef Hitz OF, Flecher X, Parratte S, Ollivier M, Argenson JN. Minimum 10-year outcome of one-stage total hip arthroplasty without subtrochanteric osteotomy using a cementless custom stem for Crowe III and IV hip dislocation. J Arthroplast. 2018;33(7):2197–202.CrossRef
3.
go back to reference Yang Y, Zuo J, Liu T, Xiao J, Liu S, Gao Z. Morphological analysis of true acetabulum in hip dysplasia (Crowe classes I-IV) via 3-D implantation simulation. J Bone Joint Surg Am. 2017;99(17):e92.PubMedCrossRef Yang Y, Zuo J, Liu T, Xiao J, Liu S, Gao Z. Morphological analysis of true acetabulum in hip dysplasia (Crowe classes I-IV) via 3-D implantation simulation. J Bone Joint Surg Am. 2017;99(17):e92.PubMedCrossRef
5.
go back to reference Goyal P, Lau A, Naudie DD, Teeter MG, Lanting BA, Howard JL. Effect of acetabular component positioning on functional outcomes in primary Total hip arthroplasty. J Arthroplast. 2017;32(3):843–8.CrossRef Goyal P, Lau A, Naudie DD, Teeter MG, Lanting BA, Howard JL. Effect of acetabular component positioning on functional outcomes in primary Total hip arthroplasty. J Arthroplast. 2017;32(3):843–8.CrossRef
6.
go back to reference Callanan MC, Jarrett B, Bragdon CR, et al. The John Charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011;469(2):319–29.PubMedCrossRef Callanan MC, Jarrett B, Bragdon CR, et al. The John Charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011;469(2):319–29.PubMedCrossRef
7.
go back to reference Grammatopoulos G, Thomas GE, Pandit H, Beard DJ, Gill HS, Murray DW. The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J. 2015;97-B(2):164–72.PubMedCrossRef Grammatopoulos G, Thomas GE, Pandit H, Beard DJ, Gill HS, Murray DW. The effect of orientation of the acetabular component on outcome following total hip arthroplasty with small diameter hard-on-soft bearings. Bone Joint J. 2015;97-B(2):164–72.PubMedCrossRef
8.
go back to reference Conn KS, Clarke MT, Hallett JP. A simple guide to determine the magnification of radiographs and to improve the accuracy of preoperative templating. J Bone Joint Surg Br. 2002;84(2):269–72.PubMedCrossRef Conn KS, Clarke MT, Hallett JP. A simple guide to determine the magnification of radiographs and to improve the accuracy of preoperative templating. J Bone Joint Surg Br. 2002;84(2):269–72.PubMedCrossRef
9.
go back to reference Mainard D, Barbier O, Knafo Y, Belleville R, Mainard-Simard L, Gross JB. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res. 2017;103(4):531–6.PubMedCrossRef Mainard D, Barbier O, Knafo Y, Belleville R, Mainard-Simard L, Gross JB. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res. 2017;103(4):531–6.PubMedCrossRef
10.
go back to reference Minoda Y, Ohzono K, Aihara M, Umeda N, Tomita M, Hayakawa K. Are acetabular component alignment guides for total hip arthroplasty accurate. J Arthroplast. 2010;25(6):986–9.CrossRef Minoda Y, Ohzono K, Aihara M, Umeda N, Tomita M, Hayakawa K. Are acetabular component alignment guides for total hip arthroplasty accurate. J Arthroplast. 2010;25(6):986–9.CrossRef
11.
go back to reference Lei P, Hu Y, Cai P, Xie J, Yang X, Wang L. Greater trochanter osteotomy with cementless THA for Crowe type IV DDH. Orthopedics. 2013;36(5):e601–5.PubMedCrossRef Lei P, Hu Y, Cai P, Xie J, Yang X, Wang L. Greater trochanter osteotomy with cementless THA for Crowe type IV DDH. Orthopedics. 2013;36(5):e601–5.PubMedCrossRef
12.
go back to reference Xu J, Li D, Ma RF, Barden B, Ding Y. Application of rapid prototyping pelvic model for patients with DDH to facilitate arthroplasty planning: a pilot study. J Arthroplast. 2015;30(11):1963–70.CrossRef Xu J, Li D, Ma RF, Barden B, Ding Y. Application of rapid prototyping pelvic model for patients with DDH to facilitate arthroplasty planning: a pilot study. J Arthroplast. 2015;30(11):1963–70.CrossRef
13.
go back to reference Boudissa M, Courvoisier A, Chabanas M, Tonetti J. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art. Expert Rev Med Devices. 2018;15(1):81–9.PubMedCrossRef Boudissa M, Courvoisier A, Chabanas M, Tonetti J. Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art. Expert Rev Med Devices. 2018;15(1):81–9.PubMedCrossRef
14.
go back to reference Gofton W, Dubrowski A, Tabloie F, Backstein D. The effect of computer navigation on trainee learning of surgical skills. J Bone Joint Surg Am. 2007;89(12):2819–27.PubMedCrossRef Gofton W, Dubrowski A, Tabloie F, Backstein D. The effect of computer navigation on trainee learning of surgical skills. J Bone Joint Surg Am. 2007;89(12):2819–27.PubMedCrossRef
15.
go back to reference Schmid J, Chênes C, Chagué S, et al. MyHip: supporting planning and surgical guidance for a better total hip arthroplasty: a pilot study. Int J Comput Assist Radiol Surg. 2015;10(10):1547–56.PubMedCrossRef Schmid J, Chênes C, Chagué S, et al. MyHip: supporting planning and surgical guidance for a better total hip arthroplasty: a pilot study. Int J Comput Assist Radiol Surg. 2015;10(10):1547–56.PubMedCrossRef
16.
go back to reference Meermans G, Van Doorn WJ, Koenraadt K, Kats J. The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement: a randomised controlled trial. Bone Joint J. 2014;96-B(3):312–8.PubMedCrossRef Meermans G, Van Doorn WJ, Koenraadt K, Kats J. The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement: a randomised controlled trial. Bone Joint J. 2014;96-B(3):312–8.PubMedCrossRef
17.
go back to reference Epstein NJ, Woolson ST, Giori NJ. Acetabular component positioning using the transverse acetabular ligament: can you find it and does it help. Clin Orthop Relat Res. 2011;469(2):412–6.PubMedCrossRef Epstein NJ, Woolson ST, Giori NJ. Acetabular component positioning using the transverse acetabular ligament: can you find it and does it help. Clin Orthop Relat Res. 2011;469(2):412–6.PubMedCrossRef
18.
go back to reference Ogawa H, Hasegawa S, Tsukada S, Matsubara M. A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty. J Arthroplast. 2018;33(6):1833–7.CrossRef Ogawa H, Hasegawa S, Tsukada S, Matsubara M. A pilot study of augmented reality technology applied to the acetabular cup placement during total hip arthroplasty. J Arthroplast. 2018;33(6):1833–7.CrossRef
19.
go back to reference Chen B, Xiao SX, Gu PC, Lin XJ. Personalized image-based templates for precise acetabular prosthesis placement in total hip arthroplasty: a pilot study. J Zhejiang Univ Sci B. 2010;11(9):673–80.PubMedPubMedCentralCrossRef Chen B, Xiao SX, Gu PC, Lin XJ. Personalized image-based templates for precise acetabular prosthesis placement in total hip arthroplasty: a pilot study. J Zhejiang Univ Sci B. 2010;11(9):673–80.PubMedPubMedCentralCrossRef
20.
go back to reference Gurgel HM, Croci AT, Cabrita HA, Vicente JR, Leonhardt MC, Rodrigues JC. Acetabular component positioning in total hip arthroplasty with and without a computer-assisted system: a prospective, randomized and controlled study. J Arthroplast. 2014;29(1):167–71.CrossRef Gurgel HM, Croci AT, Cabrita HA, Vicente JR, Leonhardt MC, Rodrigues JC. Acetabular component positioning in total hip arthroplasty with and without a computer-assisted system: a prospective, randomized and controlled study. J Arthroplast. 2014;29(1):167–71.CrossRef
21.
go back to reference Moskal JT, Capps SG. Acetabular component positioning in total hip arthroplasty: an evidence-based analysis. J Arthroplast. 2011;26(8):1432–7.CrossRef Moskal JT, Capps SG. Acetabular component positioning in total hip arthroplasty: an evidence-based analysis. J Arthroplast. 2011;26(8):1432–7.CrossRef
22.
go back to reference Parratte S, Ollivier M, Lunebourg A, Flecher X, Argenson JN. No benefit after THA performed with computer-assisted cup placement: 10-year results of a randomized controlled study. Clin Orthop Relat Res. 2016;474(10):2085–93.PubMedPubMedCentralCrossRef Parratte S, Ollivier M, Lunebourg A, Flecher X, Argenson JN. No benefit after THA performed with computer-assisted cup placement: 10-year results of a randomized controlled study. Clin Orthop Relat Res. 2016;474(10):2085–93.PubMedPubMedCentralCrossRef
23.
go back to reference Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51(4):737–55.PubMedCrossRef Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51(4):737–55.PubMedCrossRef
24.
go back to reference Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60(2):217–20.PubMedCrossRef Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60(2):217–20.PubMedCrossRef
25.
go back to reference Small T, Krebs V, Molloy R, Bryan J, Klika AK, Barsoum WK. Comparison of acetabular shell position using patient specific instruments vs. standard surgical instruments: a randomized clinical trial. J Arthroplast. 2014;29(5):1030–7.CrossRef Small T, Krebs V, Molloy R, Bryan J, Klika AK, Barsoum WK. Comparison of acetabular shell position using patient specific instruments vs. standard surgical instruments: a randomized clinical trial. J Arthroplast. 2014;29(5):1030–7.CrossRef
26.
go back to reference Zhang YZ, Chen B, Lu S, et al. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot. 2011;7(4):469–74.PubMedCrossRef Zhang YZ, Chen B, Lu S, et al. Preliminary application of computer-assisted patient-specific acetabular navigational template for total hip arthroplasty in adult single development dysplasia of the hip. Int J Med Robot. 2011;7(4):469–74.PubMedCrossRef
27.
go back to reference Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1–2):144–52.PubMedCrossRef Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1–2):144–52.PubMedCrossRef
28.
go back to reference Macdonald NP, Zhu F, Hall CJ, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16(2):291–7.PubMedCrossRef Macdonald NP, Zhu F, Hall CJ, et al. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16(2):291–7.PubMedCrossRef
29.
go back to reference Liu RY, Wang KZ, Wang CS, Dang XQ, Tong ZQ. Evaluation of medial acetabular wall bone stock in patients with developmental dysplasia of the hip using a helical computed tomography multiplanar reconstruction technique. Acta Radiol. 2009;50(7):791–7.PubMedCrossRef Liu RY, Wang KZ, Wang CS, Dang XQ, Tong ZQ. Evaluation of medial acetabular wall bone stock in patients with developmental dysplasia of the hip using a helical computed tomography multiplanar reconstruction technique. Acta Radiol. 2009;50(7):791–7.PubMedCrossRef
30.
go back to reference Rogers BA, Garbedian S, Kuchinad RA, Backstein D, Safir O, Gross AE. Total hip arthroplasty for adult hip dysplasia. J Bone Joint Surg Am. 2012;94(19):1809–21.PubMedCrossRef Rogers BA, Garbedian S, Kuchinad RA, Backstein D, Safir O, Gross AE. Total hip arthroplasty for adult hip dysplasia. J Bone Joint Surg Am. 2012;94(19):1809–21.PubMedCrossRef
31.
go back to reference Cai P, Hu Y, Xie J. Large-diameter delta ceramic-on-ceramic versus common-sized ceramic-on-polyethylene bearings in THA. Orthopedics. 2012;35(9):e1307–13.PubMedCrossRef Cai P, Hu Y, Xie J. Large-diameter delta ceramic-on-ceramic versus common-sized ceramic-on-polyethylene bearings in THA. Orthopedics. 2012;35(9):e1307–13.PubMedCrossRef
32.
go back to reference Abdel MP, Stryker LS, Trousdale RT, Berry DJ, Cabanela ME. Uncemented acetabular components with femoral head autograft for acetabular reconstruction in developmental dysplasia of the hip: a concise follow-up report at a mean of twenty years. J Bone Joint Surg Am. 2014;96(22):1878–82.PubMedCrossRef Abdel MP, Stryker LS, Trousdale RT, Berry DJ, Cabanela ME. Uncemented acetabular components with femoral head autograft for acetabular reconstruction in developmental dysplasia of the hip: a concise follow-up report at a mean of twenty years. J Bone Joint Surg Am. 2014;96(22):1878–82.PubMedCrossRef
33.
go back to reference Grammatopoulos G, Alvand A, Monk AP, et al. Surgeons' accuracy in achieving their desired acetabular component orientation. J Bone Joint Surg Am. 2016;98(17):e72.PubMedCrossRef Grammatopoulos G, Alvand A, Monk AP, et al. Surgeons' accuracy in achieving their desired acetabular component orientation. J Bone Joint Surg Am. 2016;98(17):e72.PubMedCrossRef
34.
go back to reference Wasielewski RC, Galat DD, Sheridan KC, Rubash HE. Acetabular anatomy and transacetabular screw fixation at the high hip center. Clin Orthop Relat Res. 2005;438:171–6.PubMedCrossRef Wasielewski RC, Galat DD, Sheridan KC, Rubash HE. Acetabular anatomy and transacetabular screw fixation at the high hip center. Clin Orthop Relat Res. 2005;438:171–6.PubMedCrossRef
35.
go back to reference Liu Q, Zhou YX, Xu HJ, Tang J, Guo SJ, Tang QH. Safe zone for transacetabular screw fixation in prosthetic acetabular reconstruction of high developmental dysplasia of the hip. J Bone Joint Surg Am. 2009;91(12):2880–5.PubMedCrossRef Liu Q, Zhou YX, Xu HJ, Tang J, Guo SJ, Tang QH. Safe zone for transacetabular screw fixation in prosthetic acetabular reconstruction of high developmental dysplasia of the hip. J Bone Joint Surg Am. 2009;91(12):2880–5.PubMedCrossRef
Metadata
Title
Accuracy and practicability of a patient-specific guide using acetabular superolateral rim during THA in Crowe II/III DDH patients: a retrospective study
Authors
Chenggong Wang
Han Xiao
Weiwei Yang
Long Wang
Yihe Hu
Hua Liu
Da Zhong
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-1029-1

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue