Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Research article

Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data

Authors: Yi-Ming Ren, Yuan-Hui Duan, Yun-Bo Sun, Tao Yang, Meng-Qiang Tian

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

Rotator cuff tear (RCT) is a common shoulder disorder in the elderly. Muscle atrophy, denervation and fatty infiltration exert secondary injuries on torn rotator cuff muscles. It has been reported that satellite cells (SCs) play roles in pathogenic process and regenerative capacity of human RCT via regulating of target genes. This study aims to complement the differentially expressed genes (DEGs) of SCs that regulated between the torn supraspinatus (SSP) samples and intact subscapularis (SSC) samples, identify their functions and molecular pathways.

Methods

The gene expression profile GSE93661 was downloaded and bioinformatics analysis was made.

Results

Five hundred fifty one DEGs totally were identified. Among them, 272 DEGs were overexpressed, and the remaining 279 DEGs were underexpressed. Gene ontology (GO) and pathway enrichment analysis of target genes were performed. We furthermore identified some relevant core genes using gene–gene interaction network analysis such as GNG13, GCG, NOTCH1, BCL2, NMUR2, PMCH, FFAR1, AVPR2, GNA14, and KALRN, that may contribute to the understanding of the molecular mechanisms of secondary injuries in RCT. We also discovered that GNG13/calcium signaling pathway is highly correlated with the denervation atrophy pathological process of RCT.

Conclusion

These genes and pathways provide a new perspective for revealing the underlying pathological mechanisms and therapy strategy of RCT.
Literature
1.
go back to reference Yamaguchi K, Ditsios K, Middleton WD, et al. The demographic and morphological features of rotator cuff disease. J Bone Joint Surg (Am Vol). 2006;88(8):1699–704.CrossRef Yamaguchi K, Ditsios K, Middleton WD, et al. The demographic and morphological features of rotator cuff disease. J Bone Joint Surg (Am Vol). 2006;88(8):1699–704.CrossRef
2.
go back to reference Liu X, Ravishankar B, Ning A, et al. Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration. Muscles Ligaments Tendons J. 2017;7(2):202–7.CrossRef Liu X, Ravishankar B, Ning A, et al. Knocking-out matrix metalloproteinase-13 exacerbates rotator cuff muscle fatty infiltration. Muscles Ligaments Tendons J. 2017;7(2):202–7.CrossRef
3.
go back to reference Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg. 2015;40(2):399–408.CrossRef Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg. 2015;40(2):399–408.CrossRef
4.
go back to reference Liu X, Ning AY, Chang NC, et al. Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J. 2016;6(1):6.PubMedPubMedCentral Liu X, Ning AY, Chang NC, et al. Investigating the cellular origin of rotator cuff muscle fatty infiltration and fibrosis after injury. Muscles Ligaments Tendons J. 2016;6(1):6.PubMedPubMedCentral
5.
go back to reference Isaac C, Gharaibeh B, Witt M, et al. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elb Surg. 2012;21(2):181–90.CrossRef Isaac C, Gharaibeh B, Witt M, et al. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elb Surg. 2012;21(2):181–90.CrossRef
6.
go back to reference Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends in Cell Biology. 2005;15(12):666–673.CrossRef Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment[J]. Trends in Cell Biology. 2005;15(12):666–673.CrossRef
7.
go back to reference Deanna G, Leiter JRS, Macdonald PB, et al. Altered satellite cell responsiveness and denervation implicated in progression of rotator-cuff injury. PLoS One. 2016;11(9):e0162494.CrossRef Deanna G, Leiter JRS, Macdonald PB, et al. Altered satellite cell responsiveness and denervation implicated in progression of rotator-cuff injury. PLoS One. 2016;11(9):e0162494.CrossRef
8.
go back to reference Gigliotti D, Leiter JR, Macek B, et al. Atrophy, inducible satellite cell activation and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol. 2015;309(6):C383.CrossRef Gigliotti D, Leiter JR, Macek B, et al. Atrophy, inducible satellite cell activation and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol. 2015;309(6):C383.CrossRef
9.
go back to reference Lundgreen K, Lian OB, Engebretsen L, et al. Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop. 2013;84(6):565.CrossRef Lundgreen K, Lian OB, Engebretsen L, et al. Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop. 2013;84(6):565.CrossRef
10.
go back to reference Pisani DF, Clement N, Loubat A, et al. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle. Stem Cells. 2010;28(12):2182–94.CrossRef Pisani DF, Clement N, Loubat A, et al. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle. Stem Cells. 2010;28(12):2182–94.CrossRef
11.
go back to reference Cofield RH, Parvizi J, Hoffmeyer PJ, et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J Bone Joint Surg Am. 2001;83-A(1):71–7.CrossRef Cofield RH, Parvizi J, Hoffmeyer PJ, et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J Bone Joint Surg Am. 2001;83-A(1):71–7.CrossRef
12.
go back to reference Zammit PS, Partridge TA, Yablonkareuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006;54(11):1177–91.CrossRef Zammit PS, Partridge TA, Yablonkareuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006;54(11):1177–91.CrossRef
13.
go back to reference Oliva F, Piccirilli E, Bossa M, et al. I.S.Mu.L.T - Rotator Cuff Tears Guidelines. Muscles Ligaments Tendons J. 2016;5(4):227.PubMedPubMedCentral Oliva F, Piccirilli E, Bossa M, et al. I.S.Mu.L.T - Rotator Cuff Tears Guidelines. Muscles Ligaments Tendons J. 2016;5(4):227.PubMedPubMedCentral
14.
go back to reference Hall KE, Sarkissian EJ, Sharpe O, et al. Identification of differentially expressed micro-RNA in rotator cuff tendinopathy. Muscles Ligaments Tendons J. 2018;8:8–14. Hall KE, Sarkissian EJ, Sharpe O, et al. Identification of differentially expressed micro-RNA in rotator cuff tendinopathy. Muscles Ligaments Tendons J. 2018;8:8–14.
15.
go back to reference Ryuichi T, Ronalde A. Mechano-biology of resident myogenic stem cells: molecular mechanism of stretch-induced activation of satellite cells. Anim Sci J. 2008;79(3):279–90.CrossRef Ryuichi T, Ronalde A. Mechano-biology of resident myogenic stem cells: molecular mechanism of stretch-induced activation of satellite cells. Anim Sci J. 2008;79(3):279–90.CrossRef
16.
go back to reference Pasut A, Chang NC, Rodriguez UG, et al. Notch signaling rescues loss of satellite cells lacking Pax7 and promotes brown adipogenic differentiation. Cell Rep. 2016;16(2):333–43.CrossRef Pasut A, Chang NC, Rodriguez UG, et al. Notch signaling rescues loss of satellite cells lacking Pax7 and promotes brown adipogenic differentiation. Cell Rep. 2016;16(2):333–43.CrossRef
17.
go back to reference Khayrullin A, Smith L, Mistry D, et al. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun. 2016;479(3):590–5.CrossRef Khayrullin A, Smith L, Mistry D, et al. Chronic alcohol exposure induces muscle atrophy (myopathy) in zebrafish and alters the expression of microRNAs targeting the Notch pathway in skeletal muscle. Biochem Biophys Res Commun. 2016;479(3):590–5.CrossRef
18.
go back to reference Ogura Y, Mishra V, Hindi SM, et al. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating notch and NF-kappa B signaling pathways. J Biol Chem. 2013;288(49):35159–69.CrossRef Ogura Y, Mishra V, Hindi SM, et al. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating notch and NF-kappa B signaling pathways. J Biol Chem. 2013;288(49):35159–69.CrossRef
19.
go back to reference Kamizaki K, Doi R, Hayashi M, et al. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem. 2017;292(38):15939.CrossRef Kamizaki K, Doi R, Hayashi M, et al. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem. 2017;292(38):15939.CrossRef
20.
go back to reference Guo T, Liu W, Konermann A, et al. Estradiol modulates the expression pattern of myosin heavy chain subtypes via an ERu03b1-mediated pathway in muscle-derived tissues and satellite cells. Cell Physiol Biochem. 2014;33(3):681–91.CrossRef Guo T, Liu W, Konermann A, et al. Estradiol modulates the expression pattern of myosin heavy chain subtypes via an ERu03b1-mediated pathway in muscle-derived tissues and satellite cells. Cell Physiol Biochem. 2014;33(3):681–91.CrossRef
21.
go back to reference Voronova A, Coyne E, Madhoun AA, et al. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem. 2013;288(6):4389–404.CrossRef Voronova A, Coyne E, Madhoun AA, et al. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem. 2013;288(6):4389–404.CrossRef
22.
go back to reference Conboy IM, Conboy MJ, Smythe GM, et al. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302(5650):1575–7.CrossRef Conboy IM, Conboy MJ, Smythe GM, et al. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302(5650):1575–7.CrossRef
23.
go back to reference 9Luo D, Renault VM, Rando TA. The regulation of notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol. 2005;16(5):612–22. 9Luo D, Renault VM, Rando TA. The regulation of notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol. 2005;16(5):612–22.
24.
go back to reference Mourikis P, Sambasivan R, Castel D, et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2012;30(2):243–52.CrossRef Mourikis P, Sambasivan R, Castel D, et al. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2012;30(2):243–52.CrossRef
25.
go back to reference Bjornson CRR, Cheung TH, Liu L, et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012;30(2):232–42.CrossRef Bjornson CRR, Cheung TH, Liu L, et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012;30(2):232–42.CrossRef
26.
go back to reference Fujimaki S, Seko D, Kitajima Y, et al. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells[J]. Stem Cells. 2018;36(2):278–285.CrossRef Fujimaki S, Seko D, Kitajima Y, et al. Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells[J]. Stem Cells. 2018;36(2):278–285.CrossRef
27.
go back to reference Chaudhury S, Xia Z, Thakkar D, et al. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J Shoulder Elbow Surg. 2016;25(10):1561–70.CrossRef Chaudhury S, Xia Z, Thakkar D, et al. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J Shoulder Elbow Surg. 2016;25(10):1561–70.CrossRef
28.
go back to reference Blake BL, Wing MR, Zhou JY, et al. G beta association and effector interaction selectivities of the divergent G gamma subunit G gamma(13). J Biol Chem. 2001;276(52):49267–74.CrossRef Blake BL, Wing MR, Zhou JY, et al. G beta association and effector interaction selectivities of the divergent G gamma subunit G gamma(13). J Biol Chem. 2001;276(52):49267–74.CrossRef
29.
go back to reference Tu MK, Levin JB, Hamilton AM, et al. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium. 2016;59(2–3):91–7.CrossRef Tu MK, Levin JB, Hamilton AM, et al. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium. 2016;59(2–3):91–7.CrossRef
30.
go back to reference Anderson JE, Do MQ, Daneshvar N, et al. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres[J]. Biological Reviews. 2016;92(3):1389-1405.CrossRef Anderson JE, Do MQ, Daneshvar N, et al. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres[J]. Biological Reviews. 2016;92(3):1389-1405.CrossRef
31.
go back to reference Sato Y, Do MK, Suzuki T, et al. Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim Sci J Nihon chikusan Gakkaihō. 2013;84(2):185–9.PubMed Sato Y, Do MK, Suzuki T, et al. Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim Sci J Nihon chikusan Gakkaihō. 2013;84(2):185–9.PubMed
32.
go back to reference Tatsumi R, Sankoda Y, Anderson JE, et al. Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol. 2009;297(2):C238.CrossRef Tatsumi R, Sankoda Y, Anderson JE, et al. Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol. 2009;297(2):C238.CrossRef
33.
go back to reference Vonhoff F, Keshishian H. In vivo calcium signaling during synaptic refinement at the Drosophila neuromuscular junction. J Neurosci. 2017;37(22):5511–26.CrossRef Vonhoff F, Keshishian H. In vivo calcium signaling during synaptic refinement at the Drosophila neuromuscular junction. J Neurosci. 2017;37(22):5511–26.CrossRef
Metadata
Title
Bioinformatics analysis of differentially expressed genes in rotator cuff tear patients using microarray data
Authors
Yi-Ming Ren
Yuan-Hui Duan
Yun-Bo Sun
Tao Yang
Meng-Qiang Tian
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0989-5

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue