Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Research article

Clinical experiences with a PEEK-based dynamic instrumentation device in lumbar spinal surgery: 2 years and no more

Authors: Stavros Oikonomidis, Ghazi Ashqar, Thomas Kaulhausen, Christian Herren, Jan Siewe, Rolf Sobottke

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

Dynamic spine implants were developed to prevent adjacent segment degeneration (ASD) and adjacent segment disease (ASDi). Purpose of this study was to investigate the clinical and radiological outcomes of “topping off” devices following lumbar spinal fusion procedure using a PEEK-based dynamic rod system. Moreover, this study focused on the hypothesis that “topping off” devices can prevent ASD.

Methods

This prospective nonrandomized study included patients with indication for single-level lumbar fusion and radiological signs of ASD without instability. The exclusion criteria were previous lumbar spine surgery and no sign of disc degeneration in the adjacent segment according to magnetic resonance imaging. All patients were treated with single-level lumbar interbody fusion and dynamic stabilization of the cranial adjacent segment. Patients underwent a clinical examination and radiographs preoperatively and at 1 and 2 years after surgery. Analyses were performed on clinical data collected with the German Spine Registry using the core outcome measure index (COMI) and visual analogue scale (VAS) scores for back and leg pain.

Results

A total of 22 patients (6 male and 16 female) with an average age of 57.6 years were included in the study; 20 patients completed the follow-up (FU). The average COMI score was 9.0 preoperatively, 4.2 at the 1-year FU, and 4.7 at the 2-year FU. The average preoperative VAS scores for back and leg pain were 7.7 and 7.1, respectively. At the 1-year FU, the scores were 4.25 for back pain and 2.2 for leg pain, and at the 2-year FU, the scores were 4.7 for back pain and 2.3 for leg pain. At FU, failure of the dynamic topping off implant material was verified in four cases, and ASD of the segment cranial to the topping off was confirmed in three cases.

Conclusions

These results demonstrate significant improvements in clinical outcomes and pain reduction after lumbar spinal fusion with topping off at 2 years after surgery. However, the implant failed due to the high rate of implant failure and the development of ASD in the segment cranial to the dynamic stabilized segment.
Literature
1.
go back to reference Fritzell P, Hägg O, Wessberg P, Nordwall A; Swedish Lumbar Spine Study Group. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976). 2001;26(23):2521–2532; discussion 2532-4. Fritzell P, Hägg O, Wessberg P, Nordwall A; Swedish Lumbar Spine Study Group. 2001 Volvo Award Winner in Clinical Studies: Lumbar fusion versus nonsurgical treatment for chronic low back pain: a multicenter randomized controlled trial from the Swedish Lumbar Spine Study Group. Spine (Phila Pa 1976). 2001;26(23):2521–2532; discussion 2532-4.
3.
go back to reference Kim KT, Lee SH, Lee YH, Bae SC, Suk KS. Clinical outcomes of 3 fusion methods through the posterior approach in the lumbar spine. Spine (Phila Pa 1976). 2006;31(12):1351–7. discussion 1358CrossRef Kim KT, Lee SH, Lee YH, Bae SC, Suk KS. Clinical outcomes of 3 fusion methods through the posterior approach in the lumbar spine. Spine (Phila Pa 1976). 2006;31(12):1351–7. discussion 1358CrossRef
6.
go back to reference Javedan SP, Dickman CA. Cause of adjacent-segment disease after spinal fusion. Lancet. 1999;354(9178):530–1.CrossRefPubMed Javedan SP, Dickman CA. Cause of adjacent-segment disease after spinal fusion. Lancet. 1999;354(9178):530–1.CrossRefPubMed
7.
go back to reference Mannion AF, Leivseth G, Brox JI, Fritzell P, Hägg O, Fairbank JC. ISSLS Prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine (Phila Pa 1976). 2014;39(17):1373–83. https://doi.org/10.1097/BRS.0000000000000437.CrossRef Mannion AF, Leivseth G, Brox JI, Fritzell P, Hägg O, Fairbank JC. ISSLS Prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine (Phila Pa 1976). 2014;39(17):1373–83. https://​doi.​org/​10.​1097/​BRS.​0000000000000437​.CrossRef
8.
go back to reference Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004;29(17):1938–44.CrossRef Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004;29(17):1938–44.CrossRef
12.
go back to reference Khoueir P, Kim KA, Wang MY. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.CrossRefPubMed Khoueir P, Kim KA, Wang MY. Classification of posterior dynamic stabilization devices. Neurosurg Focus. 2007;22(1):E3.CrossRefPubMed
13.
go back to reference Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRef Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8.CrossRef
15.
go back to reference Modic M, Masaryk T, Ross J, Carter J. Imaging of degenerative disk disease. Radiology. 1988;168(1):177–86.CrossRefPubMed Modic M, Masaryk T, Ross J, Carter J. Imaging of degenerative disk disease. Radiology. 1988;168(1):177–86.CrossRefPubMed
16.
go back to reference Weiner DK, Distell B, Studenski S, Martinez S, Lomasney L, Bongiorni D. Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J Am Geriatr Soc. 1994;42(3):257–63.CrossRefPubMed Weiner DK, Distell B, Studenski S, Martinez S, Lomasney L, Bongiorni D. Does radiographic osteoarthritis correlate with flexibility of the lumbar spine? J Am Geriatr Soc. 1994;42(3):257–63.CrossRefPubMed
17.
go back to reference Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J. 2007;16(8):1223–31.CrossRefPubMedPubMedCentral Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J. 2007;16(8):1223–31.CrossRefPubMedPubMedCentral
23.
go back to reference Cheng BC, Gordon J, Cheng J, Welch WC. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976). 2007;32(23):2551–7.CrossRef Cheng BC, Gordon J, Cheng J, Welch WC. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976). 2007;32(23):2551–7.CrossRef
27.
go back to reference Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976). 2006;31(4):442–9.CrossRef Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976). 2006;31(4):442–9.CrossRef
28.
go back to reference Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J. 2002;11(2):S170–8.PubMedPubMedCentral Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J. 2002;11(2):S170–8.PubMedPubMedCentral
29.
go back to reference Schmoelz W, Huber JF, Nydegger T, Dipl-Ing CL, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech. 2003;16(4):418–23.CrossRefPubMed Schmoelz W, Huber JF, Nydegger T, Dipl-Ing CL, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech. 2003;16(4):418–23.CrossRefPubMed
Metadata
Title
Clinical experiences with a PEEK-based dynamic instrumentation device in lumbar spinal surgery: 2 years and no more
Authors
Stavros Oikonomidis
Ghazi Ashqar
Thomas Kaulhausen
Christian Herren
Jan Siewe
Rolf Sobottke
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0905-z

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue