Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Systematic review

The efficacy and safety of platelet-rich fibrin for rotator cuff tears: a meta-analysis

Authors: Xiu-hua Mao, Ye-jun Zhan

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

The aim of this meta-analysis was to evaluate the efficacy and safety of platelet-rich fibrin (PRF) in improving clinical outcomes in rotator cuff tears.

Methods

We searched the following databases: Pubmed, Embase, and Cochrane library databases from inception to April 2018. Studies that compared platelet-rich fibrin versus placebo for rotator cuff tears were included in this meta-analysis. Risk ratio (RR) with 95% confidence interval (CI) was pooled for discontinuous outcome, and weighted mean difference (WMD) with 95% CI was pooled for continuous outcome. Stata 12.0 was used for meta-analysis.

Results

A total of eight studies with 219 patients were finally included in this meta-analysis. Compared with the control group, PRF has a negative role in reducing the re-tear rate (RR = 1.30, 95% CI = 0.97 to 1.75; P = 0.082). Subgroup analysis of re-tear rate was consistent in all subgroup analyses (single row or double row, volume, and risk of bias). There was no significant difference between the American Shoulder and Elbow Surgeons scale, University of California at Los Angeles scale, Constant score, and side effect (P > 0.05).

Conclusion

In conclusion, our meta-analysis suggests that the PRF does not have better effect on improving the overall clinical outcomes and re-tear rate in the arthroscopic repair of rotator cuff tears.

Literature
  1. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The demographic and morphological features of rotator cuff disease: a comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am. 2006;88:1699–704.View ArticlePubMed
  2. Liu CT, Ge HA, Hu R, et al. Arthroscopic knotless single-row repair preserving full footprint versus tear completion repair for partial articular-sided rotator cuff tear. J Orthop Surg (Hong Kong). 2018;26:2309499018770897.View Article
  3. Galatz LM, Rothermich SY, Zaegel M, Silva MJ, Havlioglu N, Thomopoulos S. Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J Orthop Res. 2005;23:1441–7.View ArticlePubMed
  4. Newsham-West R, Nicholson H, Walton M, Milburn P. Long-term morphology of a healing bone-tendon interface: a histological observation in the sheep model. J Anat. 2007;210:318–27.View ArticlePubMedPubMed Central
  5. Pauly S, Klatte F, Strobel C, et al. BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro. J Shoulder Elb Surg. 2012;21:464–73.View Article
  6. Seeherman HJ, Archambault JM, Rodeo SA, et al. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg Am. 2008;90:2206–19.View ArticlePubMed
  7. Kim SJ, Kim EK, Kim SJ, Song DH. Effects of bone marrow aspirate concentrate and platelet-rich plasma on patients with partial tear of the rotator cuff tendon. J Orthop Surg Res. 2018;13:1.View ArticlePubMedPubMed Central
  8. Andia I, Martin JI, Maffulli N. Advances with platelet rich plasma therapies for tendon regeneration. Expert Opin Biol Ther. 2018;18:389–98.View ArticlePubMed
  9. Andia I, Maffulli N. Biological therapies in regenerative sports medicine. Sports Med. 2017;47:807–28.View ArticlePubMed
  10. Natto ZS, Green MS. A leukocyte- and platelet-rich fibrin showed a regenerative potential in intrabony defects and furcation defects but not in periodontal plastic surgery. J Evid Based Dent Pract. 2017;17:408–10.View ArticlePubMed
  11. Mishra A, Pavelko T. Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med. 2006;34:1774–8.View ArticlePubMed
  12. Giovanini AF, Grossi JR, Gonzaga CC, et al. Leukocyte-platelet-rich plasma (L-PRP) induces an abnormal histophenotype in craniofacial bone repair associated with changes in the immunopositivity of the hematopoietic clusters of differentiation, osteoproteins, and TGF-beta1. Clin Implant Dent Relat Res. 2014;16:259–72.View ArticlePubMed
  13. Orrego M, Larrain C, Rosales J, et al. Effects of platelet concentrate and a bone plug on the healing of hamstring tendons in a bone tunnel. Arthroscopy. 2008;24:1373–80.View ArticlePubMed
  14. Jo CH, Kim JE, Yoon KS, et al. Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med. 2011;39:2082–90.View ArticlePubMed
  15. Antuna S, Barco R, Martinez Diez JM, Sanchez Marquez JM. Platelet-rich fibrin in arthroscopic repair of massive rotator cuff tears: a prospective randomized pilot clinical trial. Acta Orthop Belg. 2013;79:25–30.PubMed
  16. Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT. Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am J Sports Med. 2012;40:286–93.View ArticlePubMed
  17. Rodeo SA, Delos D, Williams RJ, Adler RS, Pearle A, Warren RF. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40:1234–41.View ArticlePubMed
  18. Weber SC, Kauffman JI, Parise C, Weber SJ, Katz SD. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41:263–70.View ArticlePubMed
  19. Castricini R, Longo UG, De Benedetto M, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39:258–65.View ArticlePubMed
  20. Gumina S, Campagna V, Ferrazza G, et al. Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: a prospective randomized study. J Bone Joint Surg Am. 2012;94:1345–52.View ArticlePubMed
  21. Márquez JMS, Díez JMM, Barco R, Antuña S. Functional results after arthroscopic repair of massive rotator cuff tears; influence of the application platelet-rich plasma combined with fibrin. Rev Esp Cir Ortop Traumatol. 2011;55:282–7.
  22. Zumstein MA, Rumian A, Thelu CE, et al. Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study. J Shoulder Elb Surg. 2016;25:2–11.View Article
  23. Hurley ET, Lim Fat D, Moran CJ, Mullett H. The efficacy of platelet-rich plasma and platelet-rich fibrin in arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. Am J Sports Med. 2018. [Epub ahead of print].
  24. Andia I, Maffulli N. Muscle and tendon injuries: the role of biological interventions to promote and assist healing and recovery. Arthroscopy. 2015;31:999–1015.View ArticlePubMed
  25. Andia I, Maffulli N. Platelet-rich plasma for muscle injury and tendinopathy. Sports Med Arthrosc Rev. 2013;21:191–8.View ArticlePubMed
  26. Randelli P, Arrigoni P, Ragone V, Aliprandi A, Cabitza P. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elb Surg. 2011;20:518–28.View Article
  27. Andia I, Sanchez M, Maffulli N. Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther. 2010;10:1415–26.View ArticlePubMed
  28. Castillo TN, Pouliot MA, Kim HJ, Dragoo JL. Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems. Am J Sports Med. 2011;39:266–71.View ArticlePubMed
  29. Randelli PS, Arrigoni P, Cabitza P, Volpi P, Maffulli N. Autologous platelet rich plasma for arthroscopic rotator cuff repair. A pilot study. Disabil Rehabil. 2008;30:1584–9.View ArticlePubMed
Metadata
Title
The efficacy and safety of platelet-rich fibrin for rotator cuff tears: a meta-analysis
Authors
Xiu-hua Mao
Ye-jun Zhan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0881-3

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue