Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Research article

Clinical comparison of unilateral biportal endoscopic technique versus open microdiscectomy for single-level lumbar discectomy: a multicenter, retrospective analysis

Authors: Seung-Kook Kim, Sang-Soo Kang, Young-Ho Hong, Seung-Woo Park, Su-Chan Lee

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

The unilateral biportal endoscopic (UBE) technique is a minimally invasive procedure for spinal surgery, while open microscopic discectomy is the most common surgical treatment for ruptured or herniated discs of the lumbar spine. A new endoscopic technique that uses a UBE approach has been applied to conventional arthroscopic systems for the treatment of spinal disease. In this study, we aimed to compare and evaluate the perioperative parameters and clinical outcomes, including recovery from surgery, pain and life quality modification, patient’s satisfaction, and complications, between UBE and open lumbar microdiscectomy (OLM) for single-level discectomy procedures.

Methods

This study included 141 patients with degenerative disc disease requiring discectomy at a single level from L2–L3 to L5–S1. A total of 60 and 81 patients underwent UBE and OLM, respectively. Analysis was based on comparison of perioperative metrics, operation time (OT); estimated blood loss (EBL); length of hospital stay (HS); clinical outcomes, including assessment using the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI); patient satisfaction (the MacNab score); and the incidence of reoperation and complications.

Results

The study cohort was 56.7% women, and the mean patient age was 50.98 ± 18.23 years. The mean VAS (the back and leg), MacNab score, and ODI improved significantly from the preoperative period to the last follow-up (12.92 ± 3.92) in both groups (p < 0.001). One week after operation, the back VAS score in the UBE group showed significantly more improvement than that in the OLM group. However, the 1-week, 3-month, and 12-month VAS (the back and leg), ODI improvement, modified MacNab score, and OT were not significantly different between the two groups. In the UBE group, EBL (34.67 ± 16.92) was smaller and HS (2.77 ± 1.2) was shorter than that of the OLM group (140.05 ± 57.8, 6.37 ± 1.39). However, OT (70.15 ± 22.0) was longer in the UBE group than in the OLM group (60.38 ± 15.5), and the difference was statistically significant. Meanwhile, the differences in the rate of surgical conversion and complications between the two groups were not statistically significant.

Conclusions

The UBE for single-level discectomy yielded similar clinical outcomes to OLM, including pain control, functional disability, and patient satisfaction, but incurred minimal EBL, HS, and postoperative back pain.

Trial registration

Not applicable.
Literature
1.
2.
go back to reference Benson RT, Tavares SP, Robertson SC, Sharp R, Marshall RW. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl. 2010;92:147–53.CrossRefPubMedPubMedCentral Benson RT, Tavares SP, Robertson SC, Sharp R, Marshall RW. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl. 2010;92:147–53.CrossRefPubMedPubMedCentral
3.
go back to reference Cribb GL, Jaffray DC, Cassar-Pullicino VN. Observations on the natural history of massive lumbar disc herniation. J Bone Joint Surg Br. 2007;89:782–4.CrossRefPubMed Cribb GL, Jaffray DC, Cassar-Pullicino VN. Observations on the natural history of massive lumbar disc herniation. J Bone Joint Surg Br. 2007;89:782–4.CrossRefPubMed
4.
go back to reference Carragee EJ, Han MY, Suen PW, Kim D. Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J Bone Joint Surg Am. 2003;85-A:102–8.CrossRefPubMed Carragee EJ, Han MY, Suen PW, Kim D. Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence. J Bone Joint Surg Am. 2003;85-A:102–8.CrossRefPubMed
5.
go back to reference Ahn Y, Lee SH, Park WM, Lee HY, Shin SW, Kang HY. Percutaneous endoscopic lumbar discectomy for recurrent disc herniation: surgical technique, outcome, and prognostic factors of 43 consecutive cases. Spine (Phila Pa 1976). 2004;29(16):E326–32.CrossRef Ahn Y, Lee SH, Park WM, Lee HY, Shin SW, Kang HY. Percutaneous endoscopic lumbar discectomy for recurrent disc herniation: surgical technique, outcome, and prognostic factors of 43 consecutive cases. Spine (Phila Pa 1976). 2004;29(16):E326–32.CrossRef
6.
go back to reference Lee DY, Shim CS, Ahn Y, Choi YG, Kim HJ, Lee SH. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. 2009;46:515–21.CrossRefPubMedPubMedCentral Lee DY, Shim CS, Ahn Y, Choi YG, Kim HJ, Lee SH. Comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for recurrent disc herniation. J Korean Neurosurg Soc. 2009;46:515–21.CrossRefPubMedPubMedCentral
7.
go back to reference Ruetten S, Komp M, Godolias G. A new full-endoscopic technique for the interlaminar operation of lumbar disc herniations using 6-mm endoscopes: prospective 2-year results of 331 patients. Minim Invasive Neurosurg. 2006;49:80–7.CrossRefPubMed Ruetten S, Komp M, Godolias G. A new full-endoscopic technique for the interlaminar operation of lumbar disc herniations using 6-mm endoscopes: prospective 2-year results of 331 patients. Minim Invasive Neurosurg. 2006;49:80–7.CrossRefPubMed
8.
go back to reference Hwa EJ, Hwa HD, Son SK, Park CK. Percutaneous biportal endoscopic decompression for lumbar spinal stenosis: a technical note and preliminary clinical results. J Neurosurg Spine. 2016;24:602–7.CrossRef Hwa EJ, Hwa HD, Son SK, Park CK. Percutaneous biportal endoscopic decompression for lumbar spinal stenosis: a technical note and preliminary clinical results. J Neurosurg Spine. 2016;24:602–7.CrossRef
10.
go back to reference Kambin P, Brager MD. Percutaneous posterolateral discectomy. Anatomy and mechanism. Clin Orthop Relat Res. 1987;223:145–54. Kambin P, Brager MD. Percutaneous posterolateral discectomy. Anatomy and mechanism. Clin Orthop Relat Res. 1987;223:145–54.
11.
go back to reference Hermantin FU, Peters T, Quartararo L, Kambin P. A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am. 1999;81:958–65.CrossRefPubMed Hermantin FU, Peters T, Quartararo L, Kambin P. A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am. 1999;81:958–65.CrossRefPubMed
12.
go back to reference Kambin P, O'Brien E, Zhou L, Schaffer JL. Arthroscopic microdiscectomy and selective fragmentectomy. Clin Orthop Relat Res. 1998;347:150–67.CrossRef Kambin P, O'Brien E, Zhou L, Schaffer JL. Arthroscopic microdiscectomy and selective fragmentectomy. Clin Orthop Relat Res. 1998;347:150–67.CrossRef
13.
go back to reference Casey KF, Chang MK, O'Brien ED, Yuan HA, McCullen GM, Schaffer J, et al. Arthroscopic microdiscectomy: comparison of preoperative and postoperative imaging studies. Arthroscopy. 1997;13:438–45.CrossRefPubMed Casey KF, Chang MK, O'Brien ED, Yuan HA, McCullen GM, Schaffer J, et al. Arthroscopic microdiscectomy: comparison of preoperative and postoperative imaging studies. Arthroscopy. 1997;13:438–45.CrossRefPubMed
14.
go back to reference Conrad J, Philipps M, Oertel J. High-definition imaging in endoscopic transsphenoidal pituitary surgery. Am J Rhinol Allergy. 2011;25:e13–7.CrossRefPubMed Conrad J, Philipps M, Oertel J. High-definition imaging in endoscopic transsphenoidal pituitary surgery. Am J Rhinol Allergy. 2011;25:e13–7.CrossRefPubMed
15.
go back to reference Philipps M, Oertel J. High-definition imaging in spinal neuroendoscopy. Minim Invasive Neurosurg. 2010;53:142–6.CrossRefPubMed Philipps M, Oertel J. High-definition imaging in spinal neuroendoscopy. Minim Invasive Neurosurg. 2010;53:142–6.CrossRefPubMed
16.
go back to reference Epstein NE. Different surgical approaches to far lateral lumbar disc herniations. J Spinal Disord. 1995;8:383–94.PubMed Epstein NE. Different surgical approaches to far lateral lumbar disc herniations. J Spinal Disord. 1995;8:383–94.PubMed
17.
go back to reference Wiltse LL. The paraspinal sacrospinalis-splitting approach to the lumbar spine. Clin Orthop Relat Res. 1973;91:48–57.CrossRef Wiltse LL. The paraspinal sacrospinalis-splitting approach to the lumbar spine. Clin Orthop Relat Res. 1973;91:48–57.CrossRef
18.
go back to reference Wu CY, Jou IM, Yang WS, Yang CC, Chao LY, Huang YH. Significance of the mass-compression effect of postlaminectomy/laminotomy fibrosis on histological changes on the dura mater and nerve root of the cauda equina: an experimental study in rats. J Orthop Sci. 2014;19:798–808.CrossRefPubMed Wu CY, Jou IM, Yang WS, Yang CC, Chao LY, Huang YH. Significance of the mass-compression effect of postlaminectomy/laminotomy fibrosis on histological changes on the dura mater and nerve root of the cauda equina: an experimental study in rats. J Orthop Sci. 2014;19:798–808.CrossRefPubMed
19.
go back to reference Dvorak J, Gauchat MH, Valach L. The outcome of surgery for lumbar disc herniation. I. A 4–17 years’ follow-up with emphasis on somatic aspects. Spine (Phila Pa 1976). 1998;13:1418–22.CrossRef Dvorak J, Gauchat MH, Valach L. The outcome of surgery for lumbar disc herniation. I. A 4–17 years’ follow-up with emphasis on somatic aspects. Spine (Phila Pa 1976). 1998;13:1418–22.CrossRef
20.
go back to reference Parker SL, Xu R, McGirt MJ, Witham TF, Long DM, Bydon A. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis. J Neurosurg Spine. 2010;12:178–82.CrossRefPubMed Parker SL, Xu R, McGirt MJ, Witham TF, Long DM, Bydon A. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis. J Neurosurg Spine. 2010;12:178–82.CrossRefPubMed
21.
go back to reference Vodicar M, Kosak R, Gorensek M, Korez R, Vrtovec T, Koder J, et al. Vertebral end-plate perforation for intervertebral disc height preservation after single-level lumbar discectomy: a randomized-controlled trial. Clin Spine Surg. 2017;30:E707–12.PubMed Vodicar M, Kosak R, Gorensek M, Korez R, Vrtovec T, Koder J, et al. Vertebral end-plate perforation for intervertebral disc height preservation after single-level lumbar discectomy: a randomized-controlled trial. Clin Spine Surg. 2017;30:E707–12.PubMed
22.
go back to reference Benoist M, Ficat C, Baraf P, Massare C, Bard M, Sarre J, et al. Postoperative sciatica from epidural fibrosis and lumbar arachnoiditis. Results of 38 repeat operations. Rev Rhum Mal Osteoartic. 1979;46:593–9.PubMed Benoist M, Ficat C, Baraf P, Massare C, Bard M, Sarre J, et al. Postoperative sciatica from epidural fibrosis and lumbar arachnoiditis. Results of 38 repeat operations. Rev Rhum Mal Osteoartic. 1979;46:593–9.PubMed
23.
go back to reference Fritsch EW, Heisel J, Rupp S. The failed back surgery syndrome: reasons, intraoperative findings, and long-term results: a report of 182 operative treatments. Spine (Phila Pa 1976). 1996;21:626–33.CrossRef Fritsch EW, Heisel J, Rupp S. The failed back surgery syndrome: reasons, intraoperative findings, and long-term results: a report of 182 operative treatments. Spine (Phila Pa 1976). 1996;21:626–33.CrossRef
24.
go back to reference Lewis PJ, Weir BK, Broad RW, Grace MG. Long-term prospective study of lumbosacral discectomy. J Neurosurg. 1987;67:49–53.CrossRefPubMed Lewis PJ, Weir BK, Broad RW, Grace MG. Long-term prospective study of lumbosacral discectomy. J Neurosurg. 1987;67:49–53.CrossRefPubMed
25.
go back to reference Katz JN, Lipson SJ, Larson MG, McInnes JM, Fossel AH, Liang MH. The outcome of decompressive laminectomy for degenerative lumbar stenosis. J Bone Joint Surg Am. 1991;73:809–16.CrossRefPubMed Katz JN, Lipson SJ, Larson MG, McInnes JM, Fossel AH, Liang MH. The outcome of decompressive laminectomy for degenerative lumbar stenosis. J Bone Joint Surg Am. 1991;73:809–16.CrossRefPubMed
26.
go back to reference LaRocca H, Macnab I. The laminectomy membrane. Studies in its evolution, characteristics, effects and prophylaxis in dogs. J Bone Joint Surg Br. 1974;56B:545–50.PubMed LaRocca H, Macnab I. The laminectomy membrane. Studies in its evolution, characteristics, effects and prophylaxis in dogs. J Bone Joint Surg Br. 1974;56B:545–50.PubMed
27.
go back to reference Garg M, Kumar S. Interlaminar discectomy and selective foraminotomy in lumbar disc herniation. J Orthop Surg (Hong Kong). 2001;9:15–8.CrossRef Garg M, Kumar S. Interlaminar discectomy and selective foraminotomy in lumbar disc herniation. J Orthop Surg (Hong Kong). 2001;9:15–8.CrossRef
28.
go back to reference Mayer HM, Brock M. Percutaneous endoscopic discectomy. Author’s response J Neurosurg. 1993;79:968–9. Mayer HM, Brock M. Percutaneous endoscopic discectomy. Author’s response J Neurosurg. 1993;79:968–9.
29.
go back to reference He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25:1373–81.CrossRefPubMed He J, Xiao S, Wu Z, Yuan Z. Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. Eur Spine J. 2016;25:1373–81.CrossRefPubMed
30.
go back to reference Choi CM, Chung JT, Lee SJ, Choi DJ. How I do it? Biportal endoscopic spinal surgery (BESS) for treatment of lumbar spinal stenosis. Acta Neurochir. 2016;158:459–63.CrossRefPubMedPubMedCentral Choi CM, Chung JT, Lee SJ, Choi DJ. How I do it? Biportal endoscopic spinal surgery (BESS) for treatment of lumbar spinal stenosis. Acta Neurochir. 2016;158:459–63.CrossRefPubMedPubMedCentral
31.
go back to reference Mayer HM, Brock M, Berlien HP, Weber B. Percutaneous endoscopic laser discectomy (PELD). A new surgical technique for non-sequestrated lumbar discs. Acta Neurochir Suppl (Wien). 1992;54:53–8.CrossRef Mayer HM, Brock M, Berlien HP, Weber B. Percutaneous endoscopic laser discectomy (PELD). A new surgical technique for non-sequestrated lumbar discs. Acta Neurochir Suppl (Wien). 1992;54:53–8.CrossRef
Metadata
Title
Clinical comparison of unilateral biportal endoscopic technique versus open microdiscectomy for single-level lumbar discectomy: a multicenter, retrospective analysis
Authors
Seung-Kook Kim
Sang-Soo Kang
Young-Ho Hong
Seung-Woo Park
Su-Chan Lee
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0725-1

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue