Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2017

Open Access 01-12-2017 | Research article

Assessment of the clinical efficacy of cell-assisted lipotransfer and conventional fat graft: a meta-analysis based on case-control studies

Authors: Yu Wang, Yanfei Wu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2017

Login to get access

Abstract

Background

Cell-assisted lipotransfer is a novel technique for fat grafting. This study aimed to investigate the clinical efficacy of cell-assisted lipotransfer technology compared with conventional fat grafting.

Methods

According to PRISMA guidelines, related articles in PubMed, Embase and Cochrane library were systematically searched. Studies focusing on fat survival rate and/or patient satisfaction rate for fat grafting alone versus cell-assisted lipotransfer were retrieved. Estimated fat survival and patient satisfaction rates were pooled. Subgroup analysis was stratified by the transplant site. Publication bias was conducted. Furthermore, the stability of results was assessed by sensitivity analysis.

Results

Nine articles were included in the meta-analysis. Significant heterogeneity was observed among individual studies for fat survival rate assessment (I 2 = 98.3%, P < 0.001). The fat survival rate was significantly higher in the cell-assisted lipotransfer group than in the control group [weighted mean difference = 25.85, 95% confidence interval 5.39–46.31; P = 0.013]. Notably, results remained unchanged in the sensitivity analyses. No significant difference was found in the patient satisfaction rate between the cell-assisted lipotransfer and control groups [odds ratio = 3.69, 95% confidence interval 0.73–18.53; P = 0.113]. In subgroup analysis, a significantly higher patient satisfaction rate was found in cell-assisted lipotransfer fat graft group in the face (odds ratio = 18.85, 95% confidence interval 9.03, 28.68; P < 0.001) and arm (odds ratio = 64.60, 95% confidence interval 58.79, 70.41; P < 0.001) than in the controls. Finally, no significant publication bias was found (P = 0.371).

Conclusion

This study suggests that cell-assisted lipotransfer is superior to conventional lipoinjection with improved fat survival rate. However, the long-term efficacy should be evaluated in further studies.
Literature
1.
go back to reference Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989;83:368–81.CrossRefPubMed Billings E Jr, May JW Jr. Historical review and present status of free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg. 1989;83:368–81.CrossRefPubMed
3.
go back to reference Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg. 2008;32:48–55; discussion 6–7. doi: 10.1007/s00266-007-9019-4.CrossRef Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg. 2008;32:48–55; discussion 6–7. doi: 10.​1007/​s00266-007-9019-4.CrossRef
4.
go back to reference Tiryaki T, Findikli N, Tiryaki D. Staged stem cell-enriched tissue (SET) injections for soft tissue augmentation in hostile recipient areas: a preliminary report. Aesthet Plast Surg. 2011;35:965–71. doi: 10.1007/s00266-011-9716-x.CrossRef Tiryaki T, Findikli N, Tiryaki D. Staged stem cell-enriched tissue (SET) injections for soft tissue augmentation in hostile recipient areas: a preliminary report. Aesthet Plast Surg. 2011;35:965–71. doi: 10.​1007/​s00266-011-9716-x.CrossRef
5.
go back to reference Jianhui Z, Chenggang Y, Binglun L, Yan H, Li Y, Xianjie M, Yingjun S, Shuzhong G. Autologous fat graft and bone marrow-derived mesenchymal stem cells assisted fat graft for treatment of Parry-Romberg syndrome. Ann Plast Surg. 2014;73(Suppl 1):S99–103. doi: 10.1097/SAP.0000000000000238.CrossRefPubMed Jianhui Z, Chenggang Y, Binglun L, Yan H, Li Y, Xianjie M, Yingjun S, Shuzhong G. Autologous fat graft and bone marrow-derived mesenchymal stem cells assisted fat graft for treatment of Parry-Romberg syndrome. Ann Plast Surg. 2014;73(Suppl 1):S99–103. doi: 10.​1097/​SAP.​0000000000000238​.CrossRefPubMed
6.
go back to reference Peltoniemi HH, Salmi A, Miettinen S, Mannerstrom B, Saariniemi K, Mikkonen R, Kuokkanen H, Herold C. Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study. J Plast Reconstr Aesthet Surg. 2013;66:1494–503. doi: 10.1016/j.bjps.2013.06.002.CrossRefPubMed Peltoniemi HH, Salmi A, Miettinen S, Mannerstrom B, Saariniemi K, Mikkonen R, Kuokkanen H, Herold C. Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study. J Plast Reconstr Aesthet Surg. 2013;66:1494–503. doi: 10.​1016/​j.​bjps.​2013.​06.​002.CrossRefPubMed
8.
go back to reference Sasaki GH. The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: an indirect assessment by 3D imaging. Aesthet Plast Surg. 2015;39:833–46. doi: 10.1007/s00266-015-0533-5.CrossRef Sasaki GH. The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: an indirect assessment by 3D imaging. Aesthet Plast Surg. 2015;39:833–46. doi: 10.​1007/​s00266-015-0533-5.CrossRef
9.
10.
go back to reference Ma ZW, Liu LD, Li K, Zhang YJ, Dong JH. Improvement of graft function and animal survival by fat emulsion in liver transplant rats. Colloids Surf B Biointerfaces. 2007:54, 25–32. doi: 10.1016/S0927-7765(06)00170-6. Ma ZW, Liu LD, Li K, Zhang YJ, Dong JH. Improvement of graft function and animal survival by fat emulsion in liver transplant rats. Colloids Surf B Biointerfaces. 2007:54, 25–32. doi: 10.​1016/​S0927-7765(06)00170-6.
13.
go back to reference Chang Q, Li J, Dong Z, Liu L, Lu F. Quantitative volumetric analysis of progressive hemifacial atrophy corrected using stromal vascular fraction-supplemented autologous fat grafts. Dermatol Surg. 2013;39:1465–73. doi: 10.1111/dsu.12310.PubMed Chang Q, Li J, Dong Z, Liu L, Lu F. Quantitative volumetric analysis of progressive hemifacial atrophy corrected using stromal vascular fraction-supplemented autologous fat grafts. Dermatol Surg. 2013;39:1465–73. doi: 10.​1111/​dsu.​12310.PubMed
14.
go back to reference Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzewiecki KT. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20. doi: 10.1016/s0140-6736(13)61410-5.CrossRefPubMed Kolle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzewiecki KT. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet. 2013;382:1113–20. doi: 10.​1016/​s0140-6736(13)61410-5.CrossRefPubMed
15.
17.
19.
go back to reference Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017:22–17. doi: 10.1186/s40001-017-0258-9. Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017:22–17. doi: 10.​1186/​s40001-017-0258-9.
20.
go back to reference Sommer B, Sattler G. Current concepts of fat graft survival: histology of aspirated adipose tissue and review of the literature. Dermatol Surg. 2000;26:1159–66.CrossRefPubMed Sommer B, Sattler G. Current concepts of fat graft survival: histology of aspirated adipose tissue and review of the literature. Dermatol Surg. 2000;26:1159–66.CrossRefPubMed
22.
go back to reference Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci. 2016;99:10009–21. doi: 10.3168/jds.2016-11552.CrossRefPubMed Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci. 2016;99:10009–21. doi: 10.​3168/​jds.​2016-11552.CrossRefPubMed
25.
go back to reference Kaoutzanis C, Xin M, Ballard TN, Welch KB, Momoh AO, Kozlow JH, Brown DL, Cederna PS, Wilkins EG. Autologous fat grafting after breast reconstruction in postmastectomy patients: complications, biopsy rates, and locoregional cancer recurrence rates. Ann Plast Surg. 2016;76:270–5. doi: 10.1097/SAP.0000000000000561.CrossRefPubMed Kaoutzanis C, Xin M, Ballard TN, Welch KB, Momoh AO, Kozlow JH, Brown DL, Cederna PS, Wilkins EG. Autologous fat grafting after breast reconstruction in postmastectomy patients: complications, biopsy rates, and locoregional cancer recurrence rates. Ann Plast Surg. 2016;76:270–5. doi: 10.​1097/​SAP.​0000000000000561​.CrossRefPubMed
Metadata
Title
Assessment of the clinical efficacy of cell-assisted lipotransfer and conventional fat graft: a meta-analysis based on case-control studies
Authors
Yu Wang
Yanfei Wu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2017
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-017-0645-5

Other articles of this Issue 1/2017

Journal of Orthopaedic Surgery and Research 1/2017 Go to the issue