Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2017

Open Access 01-12-2017 | Research article

Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells

Authors: Jican Zeng, Jiazhong Lin, Guanfeng Yao, Kangmei Kong, Xinjia Wang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2017

Login to get access

Abstract

Background

The aim of this study is to evaluate the effect of self-invented compound calcium phosphate cement upon the proliferation and osteogenesis of bone mesenchymal stem cells (BMSCs).

Methods

Four groups including traditional calcium phosphate cement, modified calcium phosphate cement, modified calcium phosphate cement plus bone morphogenetic protein (BMP), and control groups were established. The cell proliferation curve was delineated by MTT. The activity of BMSCs to synthesize alkaline phosphatase (AKP) was evaluated. The growth and invasion of BMSCs were observed. The expression levels of aggrecan, collagen I, collagen II, AKP, and OSX messenger RNA (mRNA) were measured by using RT-PCR.

Results

Compared with other groups, the BMSCs in the modified calcium phosphate cement group presented with loose microstructure and the BMSCs closely attached to the vector margin. At 7 days after co-culture, the expression of AKP in the modified calcium phosphate cement plus BMP group was significantly upregulated compared with those in other groups. In the modified calcium phosphate cement group, the BMSCs properly proliferated on the surface of bone cement and invaded into the cement space. At 10 days, the expression levels of aggrecan, collagen I, collagen II, AKP, and OSX mRNA in the modified calcium phosphate cement and modified calcium phosphate cement plus BMP groups were significantly upregulated than those in other groups.

Conclusions

Modified compound calcium phosphate cement possesses excellent biocompatibility and osteogenic induction ability. Loose microstructure and large pore size create a favorable environment for BMSCs proliferation and vascular invasion, as an ideal vector for releasing BMP cytokines to mediate the differentiation and osteogenesis of BMSCs.
Literature
1.
go back to reference Weitao Y, Kangmei K, Xinjia W, Weili Q. Bone regeneration using an injectable calcium phosphate/autologous iliac crest bone composites for segmental ulnar defects in rabbits. J Mater Sci Mater Med. 2008;19:2485–92.CrossRefPubMed Weitao Y, Kangmei K, Xinjia W, Weili Q. Bone regeneration using an injectable calcium phosphate/autologous iliac crest bone composites for segmental ulnar defects in rabbits. J Mater Sci Mater Med. 2008;19:2485–92.CrossRefPubMed
2.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMed
3.
go back to reference Fernández E, Vlad MD, Gel MM, López J, Torres R, Cauich JV, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphatedihy dratemixtures. Biomaterials. 2005;26:3395–404.CrossRefPubMed Fernández E, Vlad MD, Gel MM, López J, Torres R, Cauich JV, et al. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphatedihy dratemixtures. Biomaterials. 2005;26:3395–404.CrossRefPubMed
4.
go back to reference Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26:4383–94.CrossRefPubMed Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials. 2005;26:4383–94.CrossRefPubMed
5.
go back to reference Flatley T, Lynch K, Benson M. Tissue response to implants of calcium phosphate ceremic in the rabbit spine. Clin Orthop. 1983;179:246–50.CrossRef Flatley T, Lynch K, Benson M. Tissue response to implants of calcium phosphate ceremic in the rabbit spine. Clin Orthop. 1983;179:246–50.CrossRef
6.
go back to reference Martin TJ, Sims NA. Os teoclas t-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81.CrossRefPubMed Martin TJ, Sims NA. Os teoclas t-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81.CrossRefPubMed
7.
8.
go back to reference Grosfeld EC, Hoekstra JW, Herber RP, Ulrich DJ, Jansen JA, van den Beucken JJ. Long-term biological performance of injectable and degradable calcium phosphate cement. Biomed Mater. 2016;12:015009.CrossRefPubMed Grosfeld EC, Hoekstra JW, Herber RP, Ulrich DJ, Jansen JA, van den Beucken JJ. Long-term biological performance of injectable and degradable calcium phosphate cement. Biomed Mater. 2016;12:015009.CrossRefPubMed
9.
go back to reference Axrap A, Wang J, Liu Y, Wang M, Yusuf A. Study on adhesion, proliferation and differentiation of osteoblasts promoted by new absorbable bioactive glass injection in vitro. Eur Rev Med Pharmacol Sci. 2016;20:4677–81.PubMed Axrap A, Wang J, Liu Y, Wang M, Yusuf A. Study on adhesion, proliferation and differentiation of osteoblasts promoted by new absorbable bioactive glass injection in vitro. Eur Rev Med Pharmacol Sci. 2016;20:4677–81.PubMed
10.
go back to reference Karageorgiou V, Kaplan D. Porosity of 3d biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefPubMed Karageorgiou V, Kaplan D. Porosity of 3d biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefPubMed
11.
go back to reference Gosain AK, Song L, Riordan P, Amarante MT, Nagy PG, Wilson CR, et al. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg. 2002;109:619–30.CrossRefPubMed Gosain AK, Song L, Riordan P, Amarante MT, Nagy PG, Wilson CR, et al. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Plast Reconstr Surg. 2002;109:619–30.CrossRefPubMed
12.
go back to reference Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials. 2000;21:1283–90.CrossRefPubMed Yuan H, Li Y, de Bruijn JD, de Groot K, Zhang X. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials. 2000;21:1283–90.CrossRefPubMed
13.
go back to reference Renno AC, Nejadnik MR, van de Watering FC, Crovace MC, Zanotto ED, Hoefnagels JP, et al. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J Biomed Mater Res A. 2013;101:2365–73.CrossRefPubMed Renno AC, Nejadnik MR, van de Watering FC, Crovace MC, Zanotto ED, Hoefnagels JP, et al. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J Biomed Mater Res A. 2013;101:2365–73.CrossRefPubMed
14.
go back to reference Ginebra MP, Canal C, Espanol M, de Groot K, Zhang X. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64:1090–110.CrossRefPubMed Ginebra MP, Canal C, Espanol M, de Groot K, Zhang X. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64:1090–110.CrossRefPubMed
15.
go back to reference Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.CrossRefPubMed Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.CrossRefPubMed
Metadata
Title
Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells
Authors
Jican Zeng
Jiazhong Lin
Guanfeng Yao
Kangmei Kong
Xinjia Wang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2017
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-017-0598-8

Other articles of this Issue 1/2017

Journal of Orthopaedic Surgery and Research 1/2017 Go to the issue