Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Autologous bone grafts with MSCs or FGF-2 accelerate bone union in large bone defects

Authors: Hiroaki Murakami, Tomoyuki Nakasa, Masakazu Ishikawa, Nobuo Adachi, Mitsuo Ochi

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Bacground

Although the contribution of fibroblast growth factor (FGF)-2 and mesenchymal stromal cells (MSCs) to bone formation is well known, few studies have investigated the combination of an autologous bone graft with FGF-2 or MSCs for large bone defects.

Methods

We studied an atrophic non-union model with a large bone defect, created by resecting a 10-mm section from the center of each femoral shaft of 12-week-old Sprague-Dawley rats. The periosteum of the proximal and distal ends of the femur was cauterized circumferentially, and excised portions were used in the contralateral femur as autologous bone grafts. The rats were randomized to three groups and given no further treatment (group A), administered FGF-2 at 20 μg/20 μL (group B), or 1.0 × 106 MSCs (group C). Radiographs were taken every 2 weeks up to 12 weeks, with CT performed at 12 weeks. Harvested femurs were stained with toluidine blue and evaluated using radiographic and histology scores.

Results

Radiographic and histological evaluation showed that bone union had been achieved at 12 weeks in group C, while group B showed callus formation and bridging callus but non-union, and in group A, callus formation alone was evident. Both radiographic and histological scores were significantly higher at 2, 4, 6, 8, 10, and 12 weeks in groups B and C than group A and also significantly higher in group C than group B at 12 weeks.

Conclusions

These data suggest that autologous bone grafts in combination with MSCs benefit difficult cases which cannot be treated with autologous bone grafts alone.
Literature
2.
go back to reference Kawaguchi H, Kurokawa T, Hanada K, et al. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and treptozotocin-diabetic rats. Endocrinology. 1994;135:774–81.PubMed Kawaguchi H, Kurokawa T, Hanada K, et al. Stimulation of fracture repair by recombinant human basic fibroblast growth factor in normal and treptozotocin-diabetic rats. Endocrinology. 1994;135:774–81.PubMed
3.
go back to reference Kato T, Kawaguchi H, Hanada K, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 1998;16:654–9.CrossRefPubMed Kato T, Kawaguchi H, Hanada K, et al. Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 1998;16:654–9.CrossRefPubMed
4.
go back to reference Nakamura T, Hara Y, Tagawa M, et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res. 1998;13:942–9.CrossRefPubMed Nakamura T, Hara Y, Tagawa M, et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J Bone Miner Res. 1998;13:942–9.CrossRefPubMed
5.
go back to reference Kawaguchi H, Oka H, Jingushi S, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Mine Res. 2010;25:2735–43.CrossRef Kawaguchi H, Oka H, Jingushi S, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Mine Res. 2010;25:2735–43.CrossRef
6.
go back to reference Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16:155–62.CrossRefPubMed Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16:155–62.CrossRefPubMed
7.
go back to reference Fierro FA, Kalomoiris S, Sondergaard CS, et al. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011;29:1727–37.CrossRefPubMedPubMedCentral Fierro FA, Kalomoiris S, Sondergaard CS, et al. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells. 2011;29:1727–37.CrossRefPubMedPubMedCentral
8.
go back to reference Huang Z, Ren PG, Ma T, Smith RL, Goodman SB. Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine. 2010;51:305–10.CrossRefPubMed Huang Z, Ren PG, Ma T, Smith RL, Goodman SB. Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine. 2010;51:305–10.CrossRefPubMed
9.
go back to reference Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle. 2007;6:2884–9.CrossRefPubMed Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle. 2007;6:2884–9.CrossRefPubMed
10.
go back to reference Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28:33–9.CrossRefPubMed Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28:33–9.CrossRefPubMed
11.
go back to reference Yanada S, Ochi M, Adachi N, et al. Effects of CD44 antibody- or RGDS peptide-immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells. J Biomed Mater Res A. 2006;77:773–84.CrossRefPubMed Yanada S, Ochi M, Adachi N, et al. Effects of CD44 antibody- or RGDS peptide-immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells. J Biomed Mater Res A. 2006;77:773–84.CrossRefPubMed
12.
go back to reference Kodama A, Kamei N, Kongcharoensombat W, et al. In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg (Br). 2012;94:998–1006.CrossRef Kodama A, Kamei N, Kongcharoensombat W, et al. In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg (Br). 2012;94:998–1006.CrossRef
13.
go back to reference Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab. 2001;86:875–80.CrossRefPubMed Kawaguchi H, Nakamura K, Tabata Y, et al. Acceleration of fracture healing in nonhuman primates by fibroblast growth factor-2. J Clin Endocrinol Metab. 2001;86:875–80.CrossRefPubMed
14.
go back to reference Murata K, Ito H, Yoshitomi H, et al. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res. 2014;29:319–26.CrossRef Murata K, Ito H, Yoshitomi H, et al. Inhibition of miR-92a enhances fracture healing via promoting angiogenesis in a model of stabilized fracture in young mice. J Bone Miner Res. 2014;29:319–26.CrossRef
15.
go back to reference Allen HL, Wase A, Bear WT. Indomethacin and aspirin: effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand. 1980;51:595–600.CrossRefPubMed Allen HL, Wase A, Bear WT. Indomethacin and aspirin: effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand. 1980;51:595–600.CrossRefPubMed
16.
go back to reference Heiple KG, Herndon CH. The pathologic physiology of nonunion. Clin Orthop Relat Res. 1965;43:11–21.CrossRefPubMed Heiple KG, Herndon CH. The pathologic physiology of nonunion. Clin Orthop Relat Res. 1965;43:11–21.CrossRefPubMed
17.
go back to reference Hietaniemi K, Peltonen J, Paavolainen P. An experimental model for non-union in rats. Injury. 1995;26:681–6.CrossRefPubMed Hietaniemi K, Peltonen J, Paavolainen P. An experimental model for non-union in rats. Injury. 1995;26:681–6.CrossRefPubMed
18.
go back to reference Morshed S, Bhandari M. Clinical trial design in fracture-healing research: meeting the challenge. J Bone Joint Surg Am. 2008;90-A:55–61.CrossRef Morshed S, Bhandari M. Clinical trial design in fracture-healing research: meeting the challenge. J Bone Joint Surg Am. 2008;90-A:55–61.CrossRef
19.
go back to reference Pelissier P, Masquelet AC, Bareille R, et al. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–9.CrossRefPubMed Pelissier P, Masquelet AC, Bareille R, et al. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–9.CrossRefPubMed
20.
go back to reference Seebach C, Henrich D, Schaible A, et al. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats. Tissue Eng Part A. 2015;21:1565-78. Seebach C, Henrich D, Schaible A, et al. Cell-based therapy by implanted human bone marrow-derived mononuclear cells improved bone healing of large bone defects in rats. Tissue Eng Part A. 2015;21:1565-78.
21.
go back to reference Ito Y, Tanaka N, Fujimoto Y, et al. Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from green rat. J Biomed Mater Res A. 2004;69:454–61.CrossRefPubMed Ito Y, Tanaka N, Fujimoto Y, et al. Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from green rat. J Biomed Mater Res A. 2004;69:454–61.CrossRefPubMed
22.
go back to reference Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A. 2008;85:1090–5.CrossRefPubMed Nakasa T, Ishida O, Sunagawa T, et al. Feasibility of prefabricated vascularized bone graft using the combination of FGF-2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A. 2008;85:1090–5.CrossRefPubMed
23.
go back to reference Rodan SB, Wesolowski G, Kyonggeun Y, et al. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin and type I collagen mRNA levels in ROS 17/2.8 cells. J Biol Chem. 1989;264:19934–41.PubMed Rodan SB, Wesolowski G, Kyonggeun Y, et al. Opposing effects of fibroblast growth factor and pertussis toxin on alkaline phosphatase, osteopontin, osteocalcin and type I collagen mRNA levels in ROS 17/2.8 cells. J Biol Chem. 1989;264:19934–41.PubMed
24.
go back to reference Hurley MM, Abreu C, Harrison JR, et al. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:5588–93.PubMed Hurley MM, Abreu C, Harrison JR, et al. Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 1993;268:5588–93.PubMed
25.
go back to reference Kawaguchi H, Pilbeam CC, Gronowicz G, et al. Transcriptional induction of prostaglandin G/H synthase-2 by basic fibroblast growth factor. J Clin Invest. 1995;96:923–30.CrossRefPubMedPubMedCentral Kawaguchi H, Pilbeam CC, Gronowicz G, et al. Transcriptional induction of prostaglandin G/H synthase-2 by basic fibroblast growth factor. J Clin Invest. 1995;96:923–30.CrossRefPubMedPubMedCentral
26.
go back to reference Nakamura K, Kawaguchi H, Aoyama I, et al. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res. 1997;15:307–13.CrossRefPubMed Nakamura K, Kawaguchi H, Aoyama I, et al. Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res. 1997;15:307–13.CrossRefPubMed
27.
go back to reference Noda M, Vogel R. Fibroblast growth factor enhances type ß1 transforming growth factor gene expression in osteoblast-like cells. J Cell Biol. 1989;109:2529–35.CrossRefPubMed Noda M, Vogel R. Fibroblast growth factor enhances type ß1 transforming growth factor gene expression in osteoblast-like cells. J Cell Biol. 1989;109:2529–35.CrossRefPubMed
28.
go back to reference Mann BK, West JL. Tissue engineering in the cardiovascular system: progress toward a tissue engineered heart. Anat Rec. 2001;263:367–71.CrossRefPubMed Mann BK, West JL. Tissue engineering in the cardiovascular system: progress toward a tissue engineered heart. Anat Rec. 2001;263:367–71.CrossRefPubMed
29.
go back to reference Shimizu T, Sekine H, Isoi Y, et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006;12:499–507.CrossRefPubMed Shimizu T, Sekine H, Isoi Y, et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006;12:499–507.CrossRefPubMed
30.
go back to reference Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.CrossRefPubMed Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64:295–312.CrossRefPubMed
31.
go back to reference Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed
32.
go back to reference Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.CrossRefPubMed Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–4.CrossRefPubMed
33.
go back to reference Granero-Molto F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27:1887–98.CrossRefPubMedPubMedCentral Granero-Molto F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27:1887–98.CrossRefPubMedPubMedCentral
34.
go back to reference Undale A, Fraser D, Hefferan T, et al. Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. J Orthop Res. 2011;29:1804–11.CrossRefPubMedPubMedCentral Undale A, Fraser D, Hefferan T, et al. Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. J Orthop Res. 2011;29:1804–11.CrossRefPubMedPubMedCentral
35.
go back to reference Khosravi A, Cutler CM, Kelly MH, et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–7.CrossRefPubMed Khosravi A, Cutler CM, Kelly MH, et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–7.CrossRefPubMed
36.
go back to reference Kokubu T, Hak DJ, Hazelwood SJ, et al. Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J Orthop Res. 2003;21:503–10.CrossRefPubMed Kokubu T, Hak DJ, Hazelwood SJ, et al. Development of an atrophic nonunion model and comparison to a closed healing fracture in rat femur. J Orthop Res. 2003;21:503–10.CrossRefPubMed
Metadata
Title
Autologous bone grafts with MSCs or FGF-2 accelerate bone union in large bone defects
Authors
Hiroaki Murakami
Tomoyuki Nakasa
Masakazu Ishikawa
Nobuo Adachi
Mitsuo Ochi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0442-6

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue