Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Local application of rapamycin reduces epidural fibrosis after laminectomy via inhibiting fibroblast proliferation and prompting apoptosis

Authors: Yu Sun, Shuai Zhao, Xiaolei Li, Lianqi Yan, Jingcheng Wang, Daxin Wang, Hui Chen, Jihang Dai, Jun He

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

Epidural fibrosis is a common complication after laminectomy. It is associated with intractable lower back pain and additional complications. To date, no study has evaluated whether the local application of rapamycin (RAPA) can inhibit fibroblast proliferation and reduce epidural scar adhesion after laminectomy. The results of the present study showed that the local application of RAPA reduces epidural fibrosis after laminectomy in rats.

Methods

In this study, 32 male Sprague-Dawley rats were randomly divided into four groups (0.2 mg/ml RAPA-treated group, 0.1 mg/ml RAPA-treated group, 0.05 mg/ml RAPA-treated group and physiological saline group). Laminectomy was performed at the level of lumbar segment 1 to 2, and different concentrations of RAPA or saline were applied to the laminectomy sites for 10 min. Four weeks after laminectomy, the rats were sacrificed, and the degrees of epidural adhesion in each group were evaluated. Macroscopic assessment, analysis of hydroxyproline content, and histological analysis were used to determine the therapeutic effect of the local application of RAPA on the inhibition of fibroblast proliferation and the reduction of epidural fibrosis after laminectomy. Next, we cultured fibroblasts from epidural scar tissues of rats that had undergone laminectomy. Fibroblasts were exposed to the indicated concentrations of RAPA, and western blotting and TUNEL assays were used to assess the effects of RAPA on inhibiting fibroblasts proliferation and promoting fibroblast apoptosis.

Results

The results of macroscopic assessments, analysis of hydroxyproline content, and histological analyses indicated that RAPA significantly inhibited fibroblast proliferation and reduced epidural fibrosis in the treated groups in the rat model. The western blotting results indicated that the expression levels of the pro-apoptotic proteins cleaved-PARP and Bax were up-regulated, whereas those of Bcl-2 were reduced. TUNEL assay indicated that the apoptosis rates of fibroblasts were significantly increased after exposure to the indicated concentrations of RAPA.

Conclusions

The local application of RAPA reduced epidural fibrosis after laminectomy by inhibiting the proliferation of fibroblasts, stimulating their apoptosis, and decreasing collagen synthesis. This protocol may be used in new clinical treatment strategies to reduce epidural fibrosis after laminectomy.
Literature
1.
go back to reference Cooper RG, Mitchell WS, Illingworth KJ, Forbes WS, Gillespie JE, Jayson MI. The role of epidural fibrosis and defective fibrinolysis in the persistence of postlaminectomy back pain. Spine. 1991;16(16):1044–8.CrossRefPubMed Cooper RG, Mitchell WS, Illingworth KJ, Forbes WS, Gillespie JE, Jayson MI. The role of epidural fibrosis and defective fibrinolysis in the persistence of postlaminectomy back pain. Spine. 1991;16(16):1044–8.CrossRefPubMed
2.
go back to reference Bosscher HA, Heavner JE. Incidence and severity of epidural fibrosis after back surgery: an endoscopic study. Pain Pract. 2010;10(10):18–24.CrossRefPubMed Bosscher HA, Heavner JE. Incidence and severity of epidural fibrosis after back surgery: an endoscopic study. Pain Pract. 2010;10(10):18–24.CrossRefPubMed
3.
go back to reference Ross JS, Robertson JT, Frederickson RC, Petrie JL, Obuchowski N, Modic MT, et al. Association between peridural scar and recurrent radicular pain after lumbar discectomy: magnetic resonance evaluation. Neurosurgery. 1996;38(4):855–63.CrossRefPubMed Ross JS, Robertson JT, Frederickson RC, Petrie JL, Obuchowski N, Modic MT, et al. Association between peridural scar and recurrent radicular pain after lumbar discectomy: magnetic resonance evaluation. Neurosurgery. 1996;38(4):855–63.CrossRefPubMed
4.
go back to reference Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur J, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Nerol. 2007;14(9):952–70.CrossRef Cruccu G, Aziz TZ, Garcia-Larrea L, Hansson P, Jensen TS, Lefaucheur J, et al. EFNS guidelines on neurostimulation therapy for neuropathic pain. Eur J Nerol. 2007;14(9):952–70.CrossRef
5.
go back to reference BENOIST M, FICAT C, BARAF P, CAUCHOIX J. Postoperative lumbar epiduro-arachnoiditis: diagnostic and therapeutic aspects. Spine. 1980;5(5):432–6.CrossRefPubMed BENOIST M, FICAT C, BARAF P, CAUCHOIX J. Postoperative lumbar epiduro-arachnoiditis: diagnostic and therapeutic aspects. Spine. 1980;5(5):432–6.CrossRefPubMed
6.
go back to reference Liu S, Boutrand JP, Bittoun J, Tadie M. A collagen-based sealant to prevent in vivo reformation of epidural scar adhesions in an adult rat laminectomy model. J Neurosurg Spine. 2002;97(1):69–74.CrossRef Liu S, Boutrand JP, Bittoun J, Tadie M. A collagen-based sealant to prevent in vivo reformation of epidural scar adhesions in an adult rat laminectomy model. J Neurosurg Spine. 2002;97(1):69–74.CrossRef
7.
go back to reference Rodgers KE, Robertson JT, Espinoza T, Oppelt W, Cortese S, Dizerega GS, et al. Reduction of epidural fibrosis in lumbar surgery with oxiplex adhesion barriers of carboxymethylcellulose and polyethylene oxide. Spin J. 2003;3(4):277–83.CrossRef Rodgers KE, Robertson JT, Espinoza T, Oppelt W, Cortese S, Dizerega GS, et al. Reduction of epidural fibrosis in lumbar surgery with oxiplex adhesion barriers of carboxymethylcellulose and polyethylene oxide. Spin J. 2003;3(4):277–83.CrossRef
8.
go back to reference Cekinmez M, Sen O, Atalay B, Erdogan B, Bavbek M, Caner H, et al. Effects of methyl prednisolone acetate, fibrin glue and combination of methyl prednisolone acetate and fibrin glue in prevention of epidural fibrosis in a rat model. Neurol Res. 2010;32(7):700–5.CrossRefPubMed Cekinmez M, Sen O, Atalay B, Erdogan B, Bavbek M, Caner H, et al. Effects of methyl prednisolone acetate, fibrin glue and combination of methyl prednisolone acetate and fibrin glue in prevention of epidural fibrosis in a rat model. Neurol Res. 2010;32(7):700–5.CrossRefPubMed
9.
go back to reference Li X, Chen L, Lin H, Cao L, Cheng J, Dong J, et al. Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model. J Spinal Disord Tech. 2014. Li X, Chen L, Lin H, Cao L, Cheng J, Dong J, et al. Efficacy of poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) thermogel as a barrier to prevent spinal epidural fibrosis in a postlaminectomy rat model. J Spinal Disord Tech. 2014.
11.
go back to reference Sun Y, Wang L, Wang L, Sun S, Cao X, Wang P, et al. A comparison of the effectiveness of mitomycin C and 5-fluorouracil in the prevention of peridural adhesion after laminectomy. J Neurosurg Spine. 2007;7(4):423–8.CrossRefPubMed Sun Y, Wang L, Wang L, Sun S, Cao X, Wang P, et al. A comparison of the effectiveness of mitomycin C and 5-fluorouracil in the prevention of peridural adhesion after laminectomy. J Neurosurg Spine. 2007;7(4):423–8.CrossRefPubMed
12.
go back to reference Chao Z, Xiaohong K, Guangzhi N, Zhipin L, Tongjun Q, Feiran C, et al. All-trans retinoic acid prevents epidural fibrosis through nf-κb signaling pathway in post-laminectomy rats. Neuropharmacology. 2014;79:275–81.CrossRef Chao Z, Xiaohong K, Guangzhi N, Zhipin L, Tongjun Q, Feiran C, et al. All-trans retinoic acid prevents epidural fibrosis through nf-κb signaling pathway in post-laminectomy rats. Neuropharmacology. 2014;79:275–81.CrossRef
13.
go back to reference Kartal Hakan Y, Ferruh G, Merih I, Selma C, Murat D. Mitomycin c, 5-fluorouracil, and cyclosporin a prevent epidural fibrosis in an experimental laminectomy model. Eur Spine J. 2007;16(9):1525–30.CrossRef Kartal Hakan Y, Ferruh G, Merih I, Selma C, Murat D. Mitomycin c, 5-fluorouracil, and cyclosporin a prevent epidural fibrosis in an experimental laminectomy model. Eur Spine J. 2007;16(9):1525–30.CrossRef
14.
go back to reference Sun Y, Ge Y, Fu Y, Yan L, Cai J, Shi K, et al. Mitomycin C induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b and its targeting of RhoE. Eur J Pharmacol. 2015;765:198–208.CrossRefPubMed Sun Y, Ge Y, Fu Y, Yan L, Cai J, Shi K, et al. Mitomycin C induces fibroblasts apoptosis and reduces epidural fibrosis by regulating miR-200b and its targeting of RhoE. Eur J Pharmacol. 2015;765:198–208.CrossRefPubMed
15.
go back to reference Yan L, Li X, Wang J, Sun Y, Wang D, Gu J, et al. Immunomodulatory effectiveness of tacrolimus in preventing epidural scar adhesion after laminectomy in rat model. Eur J Pharmacol. 2013;699(1):194–9.CrossRefPubMed Yan L, Li X, Wang J, Sun Y, Wang D, Gu J, et al. Immunomodulatory effectiveness of tacrolimus in preventing epidural scar adhesion after laminectomy in rat model. Eur J Pharmacol. 2013;699(1):194–9.CrossRefPubMed
16.
go back to reference Gan W, Liu P, Wei W. Cell cycle status dictates effectiveness of rapamycin. Cell Cycle. 2015;14(16):2556–7.CrossRefPubMed Gan W, Liu P, Wei W. Cell cycle status dictates effectiveness of rapamycin. Cell Cycle. 2015;14(16):2556–7.CrossRefPubMed
17.
go back to reference Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.CrossRefPubMed Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.CrossRefPubMed
19.
go back to reference Kwon YS, Kim JC. Inhibition of corneal neovascularization by rapamycin. Exp Mol Med. 2006;38(2):173–9.CrossRefPubMed Kwon YS, Kim JC. Inhibition of corneal neovascularization by rapamycin. Exp Mol Med. 2006;38(2):173–9.CrossRefPubMed
20.
go back to reference Ming D, Xin W, Jie L, Yu-Xia Z, Xing-Long C, Ke-Qiu L, et al. Rapamycin combined with immature dendritic cells attenuates obliterative bronchiolitis in trachea allograft rats by regulating the balance of regulatory and effector t cells. Int Arch Allergy Immunol. 2015;167(3):177–85.CrossRef Ming D, Xin W, Jie L, Yu-Xia Z, Xing-Long C, Ke-Qiu L, et al. Rapamycin combined with immature dendritic cells attenuates obliterative bronchiolitis in trachea allograft rats by regulating the balance of regulatory and effector t cells. Int Arch Allergy Immunol. 2015;167(3):177–85.CrossRef
21.
go back to reference Bertelmann E, Pleyer U. Immunomodulatory therapy in ophthalmology—is there a place for topical application? Ophthalmologica. 2004;218(6):359–67.CrossRefPubMed Bertelmann E, Pleyer U. Immunomodulatory therapy in ophthalmology—is there a place for topical application? Ophthalmologica. 2004;218(6):359–67.CrossRefPubMed
22.
go back to reference Salas-Prato M, Assalian A, Mehdi AZ, Duperr EJ, Thompson P, Brazeau P. Inhibition by rapamycin of PDGF-and bFGF-induced human tenon fibroblast proliferation in vitro. J Glaucoma. 1996;5(1):54–9.CrossRefPubMed Salas-Prato M, Assalian A, Mehdi AZ, Duperr EJ, Thompson P, Brazeau P. Inhibition by rapamycin of PDGF-and bFGF-induced human tenon fibroblast proliferation in vitro. J Glaucoma. 1996;5(1):54–9.CrossRefPubMed
23.
go back to reference Liu H, Zhang Y, Ma H, Zhang C, Fu S. Comparison of posterior capsule opacification in rabbit eyes receiving different administrations of rapamycin. Graefes Arch Clin Exp. 2014;252(7):1111–8.CrossRef Liu H, Zhang Y, Ma H, Zhang C, Fu S. Comparison of posterior capsule opacification in rabbit eyes receiving different administrations of rapamycin. Graefes Arch Clin Exp. 2014;252(7):1111–8.CrossRef
24.
go back to reference Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, et al. mTOR regulates TGF-β2-induced epithelial—mesenchymal transition in cultured human lens epithelial cells. Graefes Arch Clin Exp. 2013;251(10):2363–70.CrossRef Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, et al. mTOR regulates TGF-β2-induced epithelial—mesenchymal transition in cultured human lens epithelial cells. Graefes Arch Clin Exp. 2013;251(10):2363–70.CrossRef
25.
go back to reference Ayumi Y, Koichi Y, Asako Y, Yohei I, Kazuhiro K, Fumihide O, et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum. 2010;62(8):2476–87.CrossRef Ayumi Y, Koichi Y, Asako Y, Yohei I, Kazuhiro K, Fumihide O, et al. Treatment with rapamycin prevents fibrosis in tight-skin and bleomycin-induced mouse models of systemic sclerosis. Arthritis Rheum. 2010;62(8):2476–87.CrossRef
26.
go back to reference Gao Y, Xu X, Ding K, Liang Y, Jiang D, Dai H. Rapamycin inhibits transforming growth factor β1-induced fibrogenesis in primary human lung fibroblasts. Yonsei Med J. 2013;54(2):437–44.CrossRefPubMedPubMedCentral Gao Y, Xu X, Ding K, Liang Y, Jiang D, Dai H. Rapamycin inhibits transforming growth factor β1-induced fibrogenesis in primary human lung fibroblasts. Yonsei Med J. 2013;54(2):437–44.CrossRefPubMedPubMedCentral
27.
go back to reference Namba DR, Ma G, Samad I, Ding D, Pandian V, Powell JD, et al. Rapamycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro. Otolaryngol Head Neck Surg.2015;152(5):881-8. Namba DR, Ma G, Samad I, Ding D, Pandian V, Powell JD, et al. Rapamycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro. Otolaryngol Head Neck Surg.2015;152(5):881-8.
28.
go back to reference Lee J, Stenzel W, Ebel H, Wedekind C, Ernestus R, Klug N. Mitomycin C in preventing spinal epidural fibrosis in a laminectomy model in rats. J Neurosurg Spine. 2004;100(1):52–5.CrossRef Lee J, Stenzel W, Ebel H, Wedekind C, Ernestus R, Klug N. Mitomycin C in preventing spinal epidural fibrosis in a laminectomy model in rats. J Neurosurg Spine. 2004;100(1):52–5.CrossRef
29.
go back to reference Lee J, Stenzel W, Ebel H, Wedekind C, Ernestus R, Klug N. The role of mitomycin c in reducing recurrence of epidural fibrosis after repeated operation in a laminectomy model in rats. J Neurosurg Spine. 2006;4(4):329–33.CrossRefPubMed Lee J, Stenzel W, Ebel H, Wedekind C, Ernestus R, Klug N. The role of mitomycin c in reducing recurrence of epidural fibrosis after repeated operation in a laminectomy model in rats. J Neurosurg Spine. 2006;4(4):329–33.CrossRefPubMed
30.
go back to reference Rydell NW, Butler J, Balazs EA, et al. Hyaluronic acid in synovial fluid. VI. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of arthritis in track horses. Acta Vet Scand. 1970;11:139–55.PubMed Rydell NW, Butler J, Balazs EA, et al. Hyaluronic acid in synovial fluid. VI. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of arthritis in track horses. Acta Vet Scand. 1970;11:139–55.PubMed
31.
go back to reference Woessner JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440–7.CrossRefPubMed Woessner JF. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93(2):440–7.CrossRefPubMed
32.
go back to reference Fukui N, Tashiro T, Hiraoka H, Oda H, Nakamura K. Adhesion formation can be reduced by the suppression of transforming growth (factor-beta 1) activity. J Orthop Res. 2000;18(2):212.CrossRefPubMed Fukui N, Tashiro T, Hiraoka H, Oda H, Nakamura K. Adhesion formation can be reduced by the suppression of transforming growth (factor-beta 1) activity. J Orthop Res. 2000;18(2):212.CrossRefPubMed
33.
go back to reference Zhang C, Kong X, Liu C, Liang Z, Zhao H, Tong W, et al. ERK2 small interfering RNAs prevent epidural fibrosis via the efficient inhibition of collagen expression and inflammation in laminectomy rats. Biochem Biophys Res Commun. 2014;444(3):395–400.CrossRefPubMed Zhang C, Kong X, Liu C, Liang Z, Zhao H, Tong W, et al. ERK2 small interfering RNAs prevent epidural fibrosis via the efficient inhibition of collagen expression and inflammation in laminectomy rats. Biochem Biophys Res Commun. 2014;444(3):395–400.CrossRefPubMed
34.
go back to reference Emmez H, Börcek AÖ, Durdağ E, Uyar PG, Kaymaz M, Aykol S. Immunomodulatory effectiveness of azithromycin in prevention of postlaminectomy epidural fibrosis. Neurol Res. 2011;33(4):344–8.CrossRefPubMed Emmez H, Börcek AÖ, Durdağ E, Uyar PG, Kaymaz M, Aykol S. Immunomodulatory effectiveness of azithromycin in prevention of postlaminectomy epidural fibrosis. Neurol Res. 2011;33(4):344–8.CrossRefPubMed
35.
go back to reference Weber T, Abendroth D, Schelzig H. Rapamycin rescue therapy in patients after kidney transplantation: first clinical experience. Transpl Int. 2005;18(2):151–6.CrossRefPubMed Weber T, Abendroth D, Schelzig H. Rapamycin rescue therapy in patients after kidney transplantation: first clinical experience. Transpl Int. 2005;18(2):151–6.CrossRefPubMed
36.
go back to reference Paola P, Michele R, Barbara I, Giovanni S, Antonio S, Antonia L, et al. Rapamycin inhibits pai-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation. 2008;85(1):125–34.CrossRef Paola P, Michele R, Barbara I, Giovanni S, Antonio S, Antonia L, et al. Rapamycin inhibits pai-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplantation. 2008;85(1):125–34.CrossRef
37.
go back to reference Poulalhon N, Farge D, Roos N, Tacheau C, Neuzillet C, Michel L, et al. Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin a Direct role as an antifibrotic agent? J Biol Chem. 2006;281(44):33045–52.CrossRefPubMed Poulalhon N, Farge D, Roos N, Tacheau C, Neuzillet C, Michel L, et al. Modulation of collagen and MMP-1 gene expression in fibroblasts by the immunosuppressive drug rapamycin a Direct role as an antifibrotic agent? J Biol Chem. 2006;281(44):33045–52.CrossRefPubMed
38.
go back to reference Zhu YQ, Cui WG, Cheng YS, Chang J, Chen NW, Yan L, et al. Biodegradable rapamycin-eluting nano-fiber membrane-covered metal stent placement to reduce fibroblast proliferation in experimental stricture in a canine model. Endoscopy. 2013;45(6):458–68.CrossRefPubMed Zhu YQ, Cui WG, Cheng YS, Chang J, Chen NW, Yan L, et al. Biodegradable rapamycin-eluting nano-fiber membrane-covered metal stent placement to reduce fibroblast proliferation in experimental stricture in a canine model. Endoscopy. 2013;45(6):458–68.CrossRefPubMed
39.
go back to reference Schachner T, Zou Y, Oberhuber A, Tzankov A, Mairinger T, Laufer GUN, et al. Local application of rapamycin inhibits neointimal hyperplasia in experimental vein grafts. Ann Thorac Surg. 2004;77(5):1580–5.CrossRefPubMed Schachner T, Zou Y, Oberhuber A, Tzankov A, Mairinger T, Laufer GUN, et al. Local application of rapamycin inhibits neointimal hyperplasia in experimental vein grafts. Ann Thorac Surg. 2004;77(5):1580–5.CrossRefPubMed
40.
go back to reference Assmann T, Homey B, Ruzicka T. Applications of tacrolimus for the treatment of skin disorders. Immunopharmacology. 2000;47(2):203–13.CrossRefPubMed Assmann T, Homey B, Ruzicka T. Applications of tacrolimus for the treatment of skin disorders. Immunopharmacology. 2000;47(2):203–13.CrossRefPubMed
41.
go back to reference Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 1995;55(9):1982–8.PubMed Shi Y, Frankel A, Radvanyi LG, Penn LZ, Miller RG, Mills GB. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 1995;55(9):1982–8.PubMed
Metadata
Title
Local application of rapamycin reduces epidural fibrosis after laminectomy via inhibiting fibroblast proliferation and prompting apoptosis
Authors
Yu Sun
Shuai Zhao
Xiaolei Li
Lianqi Yan
Jingcheng Wang
Daxin Wang
Hui Chen
Jihang Dai
Jun He
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0391-0

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue