Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

X-ray therapy promotes structural regeneration after spinal cord injury in a rat model

Authors: Dong Liu, Jun Hua, Qi-rong Dong, Yong-ming Sun, Min-feng Gan, Yi-xin Shen, Zhi-hai Fan, Peng Zhang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Objective

This study aims to investigate the therapeutic effects and mechanisms of x-ray treatment on rats following spinal cord injury (SCI).

Methods

Forty-six female Sprague–Dawley rats were subjected to spinal cord injury using the modified Allen weight-drop method. The animals were randomly divided into six groups. Two of the animal groups were irradiated with 10 Gy at the lesion site; another two groups were irradiated with 20 Gy; and the last two groups without irradiation were regarded as the sham group. One of the each of two animal groups was euthanized at different time points at 4 and 12 weeks, respectively, after irradiation. Spinal cord calluses were assessed using kinology and electrophysiology and histology methods.

Results

In all of the groups, the neurofilament (NF) counts at 14 weeks were found to be higher than that at 6 weeks after SCI. Both 10-Gy irradiated and 20-Gy irradiated groups were higher than those of the sham group at each time point (P < 0.05). The myelin basic protein (MBP) count decreased at 14 weeks after SCI in the irradiated groups (P < 0.05) but increased at 14 weeks in the sham group (P < 0.05). Furthermore, the MBP count of the irradiated groups was lower than that of the sham group at 14 weeks (P < 0.05). The glial fibrillary acidic protein (GFAP) and Nogo-A counts at 14 weeks were higher than those at 6 weeks in all the groups (P < 0.05), and there was no statistical significance with kinology and electrophysiology tests in all groups.

Conclusions

A self-repair mechanism exists after spinal cord injury, which lasts at least 14 weeks. X-ray therapy promotes the regeneration of the spinal cord system after injury.
Literature
1.
go back to reference Kalderon N, Fuks Z. Structural recovery in lesioned adult mammalian spinal cord by x-irradiation of the lesion site. Proc Natl Acad Sci U S A. 1996;93:11179–84.PubMedPubMedCentralCrossRef Kalderon N, Fuks Z. Structural recovery in lesioned adult mammalian spinal cord by x-irradiation of the lesion site. Proc Natl Acad Sci U S A. 1996;93:11179–84.PubMedPubMedCentralCrossRef
2.
go back to reference Kalderon N, Fuks Z. Severed corticospinal axons recover electrophysiologic control of muscle activity after X-ray therapy in lesioned adult spinal cord. Proc Natl Acad Sci U S A. 1996;93:11185–90.PubMedPubMedCentralCrossRef Kalderon N, Fuks Z. Severed corticospinal axons recover electrophysiologic control of muscle activity after X-ray therapy in lesioned adult spinal cord. Proc Natl Acad Sci U S A. 1996;93:11185–90.PubMedPubMedCentralCrossRef
3.
go back to reference Ridet JL, Pencalet P, Belcram M, Giraudeau B, Chastang C, Philippon J, et al. Effects of spinal cord X-irradiation on the recovery of paraplegic rats. Exp Neurol. 2000;161:1–14.PubMedCrossRef Ridet JL, Pencalet P, Belcram M, Giraudeau B, Chastang C, Philippon J, et al. Effects of spinal cord X-irradiation on the recovery of paraplegic rats. Exp Neurol. 2000;161:1–14.PubMedCrossRef
4.
go back to reference Kalderon N, Xu S, Koutcher JA, Fuks Z. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat. Brain Res. 2001;904:199–207.PubMedCrossRef Kalderon N, Xu S, Koutcher JA, Fuks Z. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat. Brain Res. 2001;904:199–207.PubMedCrossRef
5.
go back to reference Ning G, Chen R, Li Yulin, Wu Qiang, Wu Qiuli, Li Yan, et al. X-irradiation for inhibiting glial scar formation in injured spinal cord. Neural Regen Res. 2013;8(17):1582–9. Ning G, Chen R, Li Yulin, Wu Qiang, Wu Qiuli, Li Yan, et al. X-irradiation for inhibiting glial scar formation in injured spinal cord. Neural Regen Res. 2013;8(17):1582–9.
6.
go back to reference Sung-Jin Park MD, In-Soo O, et al. The effect of irradiation and methylprednisolone in spinal cord injured rats. Spine. 2011;36(6):434–40.PubMedCrossRef Sung-Jin Park MD, In-Soo O, et al. The effect of irradiation and methylprednisolone in spinal cord injured rats. Spine. 2011;36(6):434–40.PubMedCrossRef
7.
go back to reference Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20:519–30. Zhang SX, Geddes JW, Owens JL, Holmberg EG. X-irradiation reduces lesion scarring at the contusion site of adult rat spinal cord. Histol Histopathol. 2005;20:519–30.
8.
go back to reference Allen AR, Macphail RC. Surgery of experimental lesion of spinal cord equivalent to crush injury of fractured is location of spinal column. Pharmacol Biochem Behav. 1991;57(7):878–80. Allen AR, Macphail RC. Surgery of experimental lesion of spinal cord equivalent to crush injury of fractured is location of spinal column. Pharmacol Biochem Behav. 1991;57(7):878–80.
9.
go back to reference Basso DM, Beattie MS, Bresbahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21.PubMedCrossRef Basso DM, Beattie MS, Bresbahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1–21.PubMedCrossRef
10.
go back to reference Steward O, Sharp K, Yee KM, Hofstadter M. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol. 2008;209:446–68. Steward O, Sharp K, Yee KM, Hofstadter M. A re-assessment of the effects of a Nogo-66 receptor antagonist on regenerative growth of axons and locomotor recovery after spinal cord injury in mice. Exp Neurol. 2008;209:446–68.
11.
go back to reference Pinjuh D, Bedi KS. X-irradiation of adult spinal cord increases its capacity to support neurite regeneration in vitro. Int J Dev Neurosci. 2003;21:409–16.PubMedCrossRef Pinjuh D, Bedi KS. X-irradiation of adult spinal cord increases its capacity to support neurite regeneration in vitro. Int J Dev Neurosci. 2003;21:409–16.PubMedCrossRef
12.
go back to reference Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A. 2002;99:3024–9.PubMedPubMedCentralCrossRef Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A. 2002;99:3024–9.PubMedPubMedCentralCrossRef
13.
go back to reference Zheng B, Atwal J, Ho C, Case L, He X, Garcia KC, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A. 2005;102:1205–10.PubMedPubMedCentralCrossRef Zheng B, Atwal J, Ho C, Case L, He X, Garcia KC, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci U S A. 2005;102:1205–10.PubMedPubMedCentralCrossRef
Metadata
Title
X-ray therapy promotes structural regeneration after spinal cord injury in a rat model
Authors
Dong Liu
Jun Hua
Qi-rong Dong
Yong-ming Sun
Min-feng Gan
Yi-xin Shen
Zhi-hai Fan
Peng Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0327-0

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue