Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Three-dimensional motions of distal syndesmosis during walking

Authors: Chen Wang, Junsheng Yang, Shaobai Wang, Xin Ma, Xu Wang, Jiazhang Huang, Chao Zhang, Li Chen, Jian Xu, Xiang Geng, Kan Wang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Introduction

The motion of the distal syndesmosis correlates highly with the instability, while an accurate kinematic description of the distal tibiofibular joint during normal gait has not previously been presented.

Material and methods

Sixteen healthy syndesmoses of sixteen living subjects (8 male and 8 female) were studied during stance phase of the normal gait. Data of CT scanning were collected first and used to create the 3D models of the distal tibia and fibula. The lateral X-ray images of the syndesmosis were captured by fluoroscopy when the subject was walking. Seven key-pose images were selected for subsequent 3D to 2D bone model registration and six degrees-of-freedom (DOF) motions of syndesmosis were then calculated. A validation experiment was also conducted to confirm the accuracy of the 3D/2D technique for the syndesmosis.

Results

During the stance phase, the distal tibiofibular joint exhibited with 2.98 ± 1.10° of dorsi/plantarflexion, 5.94 ± 1.52° of inversion/eversion, and 5.99 ± 2.00° of internal/external rotation; 2.63 ± 1.05 mm on medial/lateral, 3.86 ± 1.65 mm on anterior/posterior, and 4.12 ± 1.53 mm on superior/inferior translation. From heel strike to mid-stance, the syndesmosis demonstrated 1.69° of dorsiflexion, 3.61° of eversion, and 3.95° of external rotation. Likewise, from mid-stance to heel-off, the syndesmosis presented 1.04° of plantarflexion, 4.95° of inversion, and 5.13° of internal rotation.

Conclusion

During the stance phase of normal gait, internal/external rotation and vertical motion play dominant roles in terms of rotation and translation, respectively.
Appendix
Available only for authorised users
Literature
3.
go back to reference Teramoto A, Kura H, Uchiyama E, Suzuki D, Yamashita T. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study. Am J Sports Med. 2008;36(2):348–52. doi:10.1177/0363546507308235.CrossRefPubMed Teramoto A, Kura H, Uchiyama E, Suzuki D, Yamashita T. Three-dimensional analysis of ankle instability after tibiofibular syndesmosis injuries: a biomechanical experimental study. Am J Sports Med. 2008;36(2):348–52. doi:10.​1177/​0363546507308235​.CrossRefPubMed
4.
6.
go back to reference Lebel BP, Pineau V, Gouzy SL, Geais L, Parienti JJ, Dutheil JJ, et al. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model. Orthop Traumatol Surg Res. 2011;97(2):111–20. doi:10.1016/j.otsr.2011.01.003.CrossRefPubMed Lebel BP, Pineau V, Gouzy SL, Geais L, Parienti JJ, Dutheil JJ, et al. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model. Orthop Traumatol Surg Res. 2011;97(2):111–20. doi:10.​1016/​j.​otsr.​2011.​01.​003.CrossRefPubMed
10.
go back to reference Zhu Z, Li G. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comp Methods BioMechanics Biomedical Engineering. 2012;15(11):1245–56. doi:10.1080/10255842.2011.597387.CrossRef Zhu Z, Li G. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comp Methods BioMechanics Biomedical Engineering. 2012;15(11):1245–56. doi:10.​1080/​10255842.​2011.​597387.CrossRef
11.
go back to reference Westblad P, Hashimoto T, Winson I, Lundberg A, Arndt A. Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-anchored markers. Foot Ankle Int. 2002;23(9):856–63.PubMed Westblad P, Hashimoto T, Winson I, Lundberg A, Arndt A. Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-anchored markers. Foot Ankle Int. 2002;23(9):856–63.PubMed
12.
go back to reference Arndt A, Westblad P, Winson I, Hashimoto T, Lundberg A. Ankle and subtalar kinematics measured with intracortical pins during the stance phase of walking. Foot Ankle Int. 2004;25(5):357–64.PubMed Arndt A, Westblad P, Winson I, Hashimoto T, Lundberg A. Ankle and subtalar kinematics measured with intracortical pins during the stance phase of walking. Foot Ankle Int. 2004;25(5):357–64.PubMed
14.
go back to reference de Asla RJ, Wan L, Rubash HE, Li G. Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res. 2006;24(5):1019–27. doi:10.1002/jor.20142.CrossRefPubMed de Asla RJ, Wan L, Rubash HE, Li G. Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res. 2006;24(5):1019–27. doi:10.​1002/​jor.​20142.CrossRefPubMed
17.
go back to reference Kobayashi T, No Y, Yoneta K, Sadakiyo M, Gamada K. In vivo kinematics of the talocrural and subtalar joints with functional ankle instability during weight-bearing ankle internal rotation: a pilot study. Foot Ankle Spec. 2013;6(3):178–84. doi:10.1177/1938640013477452.CrossRefPubMed Kobayashi T, No Y, Yoneta K, Sadakiyo M, Gamada K. In vivo kinematics of the talocrural and subtalar joints with functional ankle instability during weight-bearing ankle internal rotation: a pilot study. Foot Ankle Spec. 2013;6(3):178–84. doi:10.​1177/​1938640013477452​.CrossRefPubMed
19.
go back to reference Xu Q, Varadarajan S, Chakrabarti C, Karam LJ. A distributed Canny edge detector: algorithm and FPGA implementation. IEEE Transactions Image Processing : Publication IEEE Signal Processing Soc. 2014;23(7):2944–60.CrossRef Xu Q, Varadarajan S, Chakrabarti C, Karam LJ. A distributed Canny edge detector: algorithm and FPGA implementation. IEEE Transactions Image Processing : Publication IEEE Signal Processing Soc. 2014;23(7):2944–60.CrossRef
Metadata
Title
Three-dimensional motions of distal syndesmosis during walking
Authors
Chen Wang
Junsheng Yang
Shaobai Wang
Xin Ma
Xu Wang
Jiazhang Huang
Chao Zhang
Li Chen
Jian Xu
Xiang Geng
Kan Wang
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0306-5

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue