Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration

Authors: Markus L. Schwarz, Barbara Schneider-Wald, Joachim Brade, Dieter Schleich, Andy Schütte, Gregor Reisig

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

Standardisation is required in research, so are approval procedures for advanced therapy medical products and other procedures for articular cartilage therapies. The process of creating samples needs to be reproducible.
The aim of this study was to design, create and validate instruments (1) to create reproducible and accurate defects and (2) to isolate samples in the shape of osteochondral cylinders in a quick, reliable and sterile manner.

Methods

Adjustable instruments were created: a crown mill with a resolution of 0.05 mm and a front mill to create defects in articular cartilage and subchondral bone. The instruments were tested on knee joints of pigs from the slaughterhouse; 48 defects were created and evaluated. A punching machine was designed to harvest osteochondral plugs. These were validated in an in vivo animal study.

Results

The instruments respect the desired depth of 0.5 and 1.5 mm when creating the defects, depending on whether the person using the instrument is highly experienced (0.451 mm; confidence interval (CI): 0.390 mm; 0.512 mm and 1.403 mm; CI: 1.305 mm; 1.502 mm) or less so (0.369 mm; CI: 0.297 mm; 0.440 mm and 1.241 mm; CI: 1.141 mm; 1.341 mm). Eighty samples were taken from knee joints of Göttingen Minipigs with this punching technique. The time needed for the harvesting of the samples was 7.52 min (±2.18 min), the parallelism of the sides of the cylinders deviated by −0.63° (CI: −1.33°; 0.08°) and the surface of the cartilage deviated from the perpendicularity by 4.86° (CI: 4.154°; 5.573°). In all assessed cases, a sterile procedure was observed.

Conclusions

Instruments and procedures for standardised creation and validation of defects in articular cartilage and subchondral bone were designed. Harvesting of samples in the shape of osteochondral cylinders can now be performed in a quick, reliable and sterile manner. The presented instruments and procedures can serve as helpful steps towards standardised operating procedures in the field of regenerative therapies of articular cartilage in research and for regulatory requirements.
Footnotes
1
Collagen I scaffold without cells, provided by Amedrix, Esslingen, Germany.
 
Literature
1.
go back to reference ASTM F2451-05(2010), Standard Guide for in vivo Assessment of Implantable Devices Intended to Repair or Regenerate Articular Cartilage. ASTM International, West Conshohocken, PA, 2010, http://www.astm.org; access July 13th 2015. ASTM F2451-05(2010), Standard Guide for in vivo Assessment of Implantable Devices Intended to Repair or Regenerate Articular Cartilage. ASTM International, West Conshohocken, PA, 2010, http://​www.​astm.​org; access July 13th 2015.
5.
go back to reference Katta J, Stapleton T, Ingham E, Jin ZM, Fisher J. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc Inst Mech Eng H. 2008;222(1):1–11.PubMedCrossRef Katta J, Stapleton T, Ingham E, Jin ZM, Fisher J. The effect of glycosaminoglycan depletion on the friction and deformation of articular cartilage. Proc Inst Mech Eng H. 2008;222(1):1–11.PubMedCrossRef
7.
go back to reference Bell CJ, Ingham E, Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc Inst Mech Eng H. 2006;220(1):23–31.PubMedCrossRef Bell CJ, Ingham E, Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc Inst Mech Eng H. 2006;220(1):23–31.PubMedCrossRef
8.
go back to reference Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng H. 1996;210(2):109–19.PubMedCrossRef Forster H, Fisher J. The influence of loading time and lubricant on the friction of articular cartilage. Proc Inst Mech Eng H. 1996;210(2):109–19.PubMedCrossRef
9.
go back to reference Gleghorn JP, Doty SB, Warren RF, Wright TM, Maher SA, Bonassar LJ. Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams. J Orthop Res. 2010;28(10):1292–9. doi:10.1002/jor.21136.PubMedCrossRef Gleghorn JP, Doty SB, Warren RF, Wright TM, Maher SA, Bonassar LJ. Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams. J Orthop Res. 2010;28(10):1292–9. doi:10.​1002/​jor.​21136.PubMedCrossRef
11.
go back to reference Schwarz ML, Schneider-Wald B, Krase A, Richter W, Reisig G, Kreinest M, et al. Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results. Orthopade. 2012;41(10):827–36. doi:10.1007/s00132-012-1951-6.PubMedCrossRef Schwarz ML, Schneider-Wald B, Krase A, Richter W, Reisig G, Kreinest M, et al. Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results. Orthopade. 2012;41(10):827–36. doi:10.​1007/​s00132-012-1951-6.PubMedCrossRef
14.
go back to reference Gotterbarm T, Breusch SJ, Schneider U, Jung M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim. 2008;42(1):71–82. doi:10.1258/la.2007.06029e.PubMedCrossRef Gotterbarm T, Breusch SJ, Schneider U, Jung M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim. 2008;42(1):71–82. doi:10.​1258/​la.​2007.​06029e.PubMedCrossRef
15.
17.
go back to reference Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, et al. Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb. 2004;142(5):529–39. doi:10.1055/s-2004-832353.PubMedCrossRef Behrens P, Bosch U, Bruns J, Erggelet C, Esenwein SA, Gaissmaier C, et al. Indications and implementation of recommendations of the working group “Tissue Regeneration and Tissue Substitutes” for autologous chondrocyte transplantation (ACT). Z Orthop Ihre Grenzgeb. 2004;142(5):529–39. doi:10.​1055/​s-2004-832353.PubMedCrossRef
18.
go back to reference Steinwachs MR, Erggelet C, Lahm A, Guhlke-Steinwachs U. Clinical and cell biology aspects of autologous chondrocytes transplantation. Unfallchirurg. 1999;102(11):855–60.PubMedCrossRef Steinwachs MR, Erggelet C, Lahm A, Guhlke-Steinwachs U. Clinical and cell biology aspects of autologous chondrocytes transplantation. Unfallchirurg. 1999;102(11):855–60.PubMedCrossRef
19.
go back to reference Drobnic M, Radosavljevic D, Cor A, Brittberg M, Strazar K. Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials. J Bone Joint Surg Br. 2010;92(4):602–8. doi:10.1302/0301-620X.92B3.22558.PubMedCrossRef Drobnic M, Radosavljevic D, Cor A, Brittberg M, Strazar K. Debridement of cartilage lesions before autologous chondrocyte implantation by open or transarthroscopic techniques: a comparative study using post-mortem materials. J Bone Joint Surg Br. 2010;92(4):602–8. doi:10.​1302/​0301-620X.​92B3.​22558.PubMedCrossRef
20.
go back to reference Mika J, Clanton TO, Pretzel D, Schneider G, Ambrose CG, Kinne RW. Surgical preparation for articular cartilage regeneration without penetration of the subchondral bone plate: in vitro and in vivo studies in humans and sheep. Am J Sports Med. 2011;39(3):624–31. doi:10.1177/0363546510388876.PubMedCrossRef Mika J, Clanton TO, Pretzel D, Schneider G, Ambrose CG, Kinne RW. Surgical preparation for articular cartilage regeneration without penetration of the subchondral bone plate: in vitro and in vivo studies in humans and sheep. Am J Sports Med. 2011;39(3):624–31. doi:10.​1177/​0363546510388876​.PubMedCrossRef
21.
go back to reference Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32. discussion 23-32.PubMed Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32. discussion 23-32.PubMed
23.
go back to reference Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21(9):1066–75. doi:10.1016/j.arthro.2005.06.018.PubMedCrossRef Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21(9):1066–75. doi:10.​1016/​j.​arthro.​2005.​06.​018.PubMedCrossRef
24.
25.
26.
go back to reference Brehm W, Aklin B, Yamashita T, Rieser F, Trub T, Jakob RP, et al. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage. 2006;14(12):1214–26. doi:10.1016/j.joca.2006.05.002.PubMedCrossRef Brehm W, Aklin B, Yamashita T, Rieser F, Trub T, Jakob RP, et al. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage. 2006;14(12):1214–26. doi:10.​1016/​j.​joca.​2006.​05.​002.PubMedCrossRef
27.
go back to reference Gavenis K, Schneider U, Maus U, Mumme T, Muller-Rath R, Schmidt-Rohlfing B, et al. Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible? Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2307–14. doi:10.1007/s00167-011-1847-8.PubMedCrossRef Gavenis K, Schneider U, Maus U, Mumme T, Muller-Rath R, Schmidt-Rohlfing B, et al. Cell-free repair of small cartilage defects in the Goettinger minipig: which defect size is possible? Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2307–14. doi:10.​1007/​s00167-011-1847-8.PubMedCrossRef
28.
go back to reference Gille J, Kunow J, Boisch L, Behrerns P, Bos I, Hoffmann C, et al. Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular defects: a histological and biomechanical study in sheep. Cartilage. 2010;1(1):29–42.PubMedCentralPubMedCrossRef Gille J, Kunow J, Boisch L, Behrerns P, Bos I, Hoffmann C, et al. Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular defects: a histological and biomechanical study in sheep. Cartilage. 2010;1(1):29–42.PubMedCentralPubMedCrossRef
30.
go back to reference Shortkroff S, Barone L, Hsu HP, Wrenn C, Gagne T, Chi T, et al. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996;17(2):147–54.PubMedCrossRef Shortkroff S, Barone L, Hsu HP, Wrenn C, Gagne T, Chi T, et al. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996;17(2):147–54.PubMedCrossRef
32.
go back to reference Pastoureau P, Leduc S, Chomel A, De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):412–23.PubMedCrossRef Pastoureau P, Leduc S, Chomel A, De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):412–23.PubMedCrossRef
33.
go back to reference Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair—translational data and clinical evidence. Eur Cell Mater. 2013;25:299–316. discussion 4–6.PubMed Orth P, Cucchiarini M, Kohn D, Madry H. Alterations of the subchondral bone in osteochondral repair—translational data and clinical evidence. Eur Cell Mater. 2013;25:299–316. discussion 4–6.PubMed
34.
go back to reference Pickard JE, Fisher J, Ingham E, Egan J. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19(19):1807–12.PubMedCrossRef Pickard JE, Fisher J, Ingham E, Egan J. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19(19):1807–12.PubMedCrossRef
35.
go back to reference (DGHM) DGfHuM, Podbielski AH, Herrmann MH, Kniehl EH, Mauch HH, Rüssmann HH. MiQ: Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. München: Urban & Fischer Verlag/Elsevier GmbH; 2007. (DGHM) DGfHuM, Podbielski AH, Herrmann MH, Kniehl EH, Mauch HH, Rüssmann HH. MiQ: Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. München: Urban & Fischer Verlag/Elsevier GmbH; 2007.
36.
go back to reference Frisbie DD, Cross MW, McIlwraith CW. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006;19(3):142–6.PubMed Frisbie DD, Cross MW, McIlwraith CW. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006;19(3):142–6.PubMed
37.
38.
go back to reference Custers RJ, Saris DB, Dhert WJ, Verbout AJ, van Rijen MH, Mastbergen SC, et al. Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J Bone Joint Surg Am. 2009;91(4):900–10. doi:10.2106/JBJS.H.00668.PubMedCrossRef Custers RJ, Saris DB, Dhert WJ, Verbout AJ, van Rijen MH, Mastbergen SC, et al. Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J Bone Joint Surg Am. 2009;91(4):900–10. doi:10.​2106/​JBJS.​H.​00668.PubMedCrossRef
39.
go back to reference Jung M, Kaszap B, Redohl A, Steck E, Breusch S, Richter W, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant. 2009;18(8):923–32. doi:10.3727/096368909X471297.PubMedCrossRef Jung M, Kaszap B, Redohl A, Steck E, Breusch S, Richter W, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant. 2009;18(8):923–32. doi:10.​3727/​096368909X471297​.PubMedCrossRef
40.
go back to reference Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, et al. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(1):65–77.PubMedCrossRef Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, et al. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(1):65–77.PubMedCrossRef
Metadata
Title
Instruments for reproducible setting of defects in cartilage and harvesting of osteochondral plugs for standardisation of preclinical tests for articular cartilage regeneration
Authors
Markus L. Schwarz
Barbara Schneider-Wald
Joachim Brade
Dieter Schleich
Andy Schütte
Gregor Reisig
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0257-x

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue