Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Osteosynthesis-screw augmentation by ultrasound-activated biopolymer - an ovine in vivo study assessing biocompatibility and bone-to-implant contact

Authors: Hanjo Neumann, Stefan Breer, Nils Reimers, Richard Kasch, Arndt-Peter Schulz, Benjamin Kienast

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Objectives

Screw fixation and fragment anchoring in osteoporotic bones is often difficult. Problems like the cut out phenomenon and implant migration in osteoporotic bones have been reported. One possibility of improving the anchoring force of screws is augmentation of the screw. Cement-augmented screws in spinal surgery could exhibit a better anchoring in osteoporotic bones.

Methods

The purpose of this study was to examine the effect of screw augmentation using a resorbable polymer. Ultrasound-activated biodegradable pins were used for the purpose of a resorbable augmentation technique. Cannulated screws were inserted into the femur of 12 sheep and augmented by an ultrasound-activated polylactic acid (PLDLA) pin. In a paired approach, four screws were implanted in each animal: 2× a 10-mm thread and 2× a 20-mm thread, both of which were augmented with polymer. Both screws, named A and B, were also applied without augmentation (control group) and implanted into the contralateral hind limb. After 4, 8, and 12 weeks, the sheep were euthanized and a macroscopical and histological examination followed.

Results

The polymer spread well out of the screws into the cancellous lacunae. Around the polymer, the peripheral bone showed signs of healthy and active bone tissue. No evidence of inflammation or infection was observed. The boneto-implant contact was significantly higher in the augmented screws. Biocompatibility was proven in histopathological examination. After 12 weeks, no pathological changes were found.

Conclusion

Ultrasound-activated polymer augmentation of cannulated screws may improve the anchoring in osteoporotic bone.

Article focus

  • Can screw augmentation using a resorbable polymer improve the bone-to-implant contact in case of screw osteosynthesis?
  • Is there any effect on the surrounding tissue by the induced temperature and liquefied polymer?
  • Can biocompatibility be proven by this new osteosynthesis?

Key messages

  • Screw augmentation by ultrasound-activated biopolymer leads to a significant higher bone-to-implant contact than pure screw osteosynthesis.
  • No tissue damage could be observed by the application of the SonicFusion™.

Strength and limitations of this study

  • The ovine in vivo study concept can simulate physiological conditions.
  • First examination of screw augmentation by ultrasound-activated biopolymer.
  • No biomechanical testing of the higher bone-to-implant contact by now.
Literature
1.
go back to reference Kannus P, Parkkari J, Koskinen S, Niemi S, Palvanen M, Jarvinen M, et al. Fall-induced injuries and deaths among older adults. JAMA. 1999;281(20):1895–9.PubMedCrossRef Kannus P, Parkkari J, Koskinen S, Niemi S, Palvanen M, Jarvinen M, et al. Fall-induced injuries and deaths among older adults. JAMA. 1999;281(20):1895–9.PubMedCrossRef
2.
go back to reference Jones G, Nguyen T, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporos Int. 1994;4(5):277–82.PubMedCrossRef Jones G, Nguyen T, Sambrook PN, Kelly PJ, Gilbert C, Eisman JA. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiology Study (DOES). Osteoporos Int. 1994;4(5):277–82.PubMedCrossRef
3.
go back to reference Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993;7(5):438–42.PubMedCrossRef Barrios C, Brostrom LA, Stark A, Walheim G. Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma. 1993;7(5):438–42.PubMedCrossRef
4.
go back to reference Schulz AP, Reimers N, Wipf F, Vallotton M, Bonaretti S, Kozic N, et al. Evidence based development of a novel lateral fibula plate (VariAx Fibula) using a real CT bone data based optimization process during device development. Open Orthop J. 2012;6:1–7.PubMedCentralPubMedCrossRef Schulz AP, Reimers N, Wipf F, Vallotton M, Bonaretti S, Kozic N, et al. Evidence based development of a novel lateral fibula plate (VariAx Fibula) using a real CT bone data based optimization process during device development. Open Orthop J. 2012;6:1–7.PubMedCentralPubMedCrossRef
5.
go back to reference Voigt C, Geisler A, Hepp P, Schulz AP, Lill H. Are polyaxially locked screws advantageous in the plate osteosynthesis of proximal humeral fractures in the elderly? A prospective randomized clinical observational study. J Orthop Trauma. 2011;25(10):596–602.PubMedCrossRef Voigt C, Geisler A, Hepp P, Schulz AP, Lill H. Are polyaxially locked screws advantageous in the plate osteosynthesis of proximal humeral fractures in the elderly? A prospective randomized clinical observational study. J Orthop Trauma. 2011;25(10):596–602.PubMedCrossRef
6.
go back to reference Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br. 1990;72(1):26–31.PubMed Davis TR, Sher JL, Horsman A, Simpson M, Porter BB, Checketts RG. Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br. 1990;72(1):26–31.PubMed
7.
go back to reference Lenich A, Vester H, Nerlich M, Mayr E, Stockle U, Fuchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip–Blade vs screw. Injury. 2010;41(12):1292–6.PubMedCrossRef Lenich A, Vester H, Nerlich M, Mayr E, Stockle U, Fuchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip–Blade vs screw. Injury. 2010;41(12):1292–6.PubMedCrossRef
8.
go back to reference Andersson T, Agholme F, Aspenberg P, Tengvall P. Surface immobilized zoledronate improves screw fixation in rat bone: a new method for the coating of metal implants. J Mater Sci Mater Med. 2010;21(11):3029–37.PubMedCrossRef Andersson T, Agholme F, Aspenberg P, Tengvall P. Surface immobilized zoledronate improves screw fixation in rat bone: a new method for the coating of metal implants. J Mater Sci Mater Med. 2010;21(11):3029–37.PubMedCrossRef
9.
go back to reference Lee JH, Nam H, Ryu HS, Seo JH, Chang BS, Lee CK. Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone. J Orthop Sci. 2011;16(3):291–7.PubMedCrossRef Lee JH, Nam H, Ryu HS, Seo JH, Chang BS, Lee CK. Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone. J Orthop Sci. 2011;16(3):291–7.PubMedCrossRef
10.
go back to reference Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3(4):301–6.PubMedCrossRef Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3(4):301–6.PubMedCrossRef
11.
go back to reference Larsson S, Stadelmann VA, Arnoldi J, Behrens M, Hess B, Procter P. Injectable calcium phosphate cement for augmentation around cancellous bone screws. In vivo biomechanical studies. J Biomechanics. 2012;45(7):1156–60.CrossRef Larsson S, Stadelmann VA, Arnoldi J, Behrens M, Hess B, Procter P. Injectable calcium phosphate cement for augmentation around cancellous bone screws. In vivo biomechanical studies. J Biomechanics. 2012;45(7):1156–60.CrossRef
12.
go back to reference Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRef Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRef
13.
go back to reference Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004;4(4):402–8.PubMedCrossRef Cook SD, Salkeld SL, Stanley T, Faciane A, Miller SD. Biomechanical study of pedicle screw fixation in severely osteoporotic bone. Spine J. 2004;4(4):402–8.PubMedCrossRef
14.
go back to reference Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci. 2005;10(1):56–61.PubMedCrossRef Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci. 2005;10(1):56–61.PubMedCrossRef
15.
go back to reference Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205):1796–9.PubMedCrossRef Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, VanWagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267(5205):1796–9.PubMedCrossRef
16.
go back to reference Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery. 2007;61(3):531–7. discussion 537–8.PubMedCrossRef Frankel BM, Jones T, Wang C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery. 2007;61(3):531–7. discussion 537–8.PubMedCrossRef
17.
go back to reference Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL. Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine (Phila Pa 1976). 2010;35(19):E932–9.CrossRef Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL. Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine (Phila Pa 1976). 2010;35(19):E932–9.CrossRef
18.
go back to reference Alho A, Benterud JG, Solovieva S. Internally fixed femoral neck fractures. Early prediction of failure in 203 elderly patients with displaced fractures. Acta Orthop Scand. 1999;70(2):141–4.PubMedCrossRef Alho A, Benterud JG, Solovieva S. Internally fixed femoral neck fractures. Early prediction of failure in 203 elderly patients with displaced fractures. Acta Orthop Scand. 1999;70(2):141–4.PubMedCrossRef
19.
go back to reference Erhart S, Schmoelz W, Blauth M, Lenich A. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail Antirotation. Injury. 2011;42(11):1322–7.PubMedCrossRef Erhart S, Schmoelz W, Blauth M, Lenich A. Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail Antirotation. Injury. 2011;42(11):1322–7.PubMedCrossRef
20.
go back to reference Moore DC, Frankenburg EP, Goulet JA, Goldstein SA. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis. J Orthop Trauma. 1997;11(8):577–83.PubMedCrossRef Moore DC, Frankenburg EP, Goulet JA, Goldstein SA. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis. J Orthop Trauma. 1997;11(8):577–83.PubMedCrossRef
21.
go back to reference Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P. Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury. 2010;41(11):1150–5.PubMedCrossRef Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P. Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury. 2010;41(11):1150–5.PubMedCrossRef
22.
go back to reference Wu MH, Lee PC, Peng KT, Wu CC, Huang TJ, Hsu RW. Complications of cement-augmented dynamic hip screws in unstable type intertrochanteric fractures - a case series study. Chang Gung Med J. 2012;35(4):345–53.PubMed Wu MH, Lee PC, Peng KT, Wu CC, Huang TJ, Hsu RW. Complications of cement-augmented dynamic hip screws in unstable type intertrochanteric fractures - a case series study. Chang Gung Med J. 2012;35(4):345–53.PubMed
23.
go back to reference Arnoldi J, Henry P, Procter P, Robioneck B, Jonsson A. In vivo tissue response to ultrasound assisted application of biodegradable pins into cortical and cancellous bone structures: a histological and densitometric analysis in rabbits. J Biomater Sci Polym Ed. 2012;23(5):663–76.PubMedCrossRef Arnoldi J, Henry P, Procter P, Robioneck B, Jonsson A. In vivo tissue response to ultrasound assisted application of biodegradable pins into cortical and cancellous bone structures: a histological and densitometric analysis in rabbits. J Biomater Sci Polym Ed. 2012;23(5):663–76.PubMedCrossRef
24.
go back to reference Schneider M, Seinige C, Pilling E, Rasse M, Loukota R, Stadlinger B. Ultrasound-aided resorbable osteosynthesis of fractures of the mandibular condylar base: an experimental study in sheep. Br J Oral Maxillofac Surg. 2011;50(6):528–32.PubMedCrossRef Schneider M, Seinige C, Pilling E, Rasse M, Loukota R, Stadlinger B. Ultrasound-aided resorbable osteosynthesis of fractures of the mandibular condylar base: an experimental study in sheep. Br J Oral Maxillofac Surg. 2011;50(6):528–32.PubMedCrossRef
25.
go back to reference Schneider M, Eckelt U, Reitemeier B, Meissner H, Richter G, Loukota R, et al. Stability of fixation of diacapitular fractures of the mandibular condylar process by ultrasound-aided resorbable pins (SonicWeld RxÆ System) in pigs. Br J Oral Maxillofac Surg. 2011;49(20627494):297–301.PubMedCrossRef Schneider M, Eckelt U, Reitemeier B, Meissner H, Richter G, Loukota R, et al. Stability of fixation of diacapitular fractures of the mandibular condylar process by ultrasound-aided resorbable pins (SonicWeld RxÆ System) in pigs. Br J Oral Maxillofac Surg. 2011;49(20627494):297–301.PubMedCrossRef
26.
go back to reference Nkenke E, Vairaktaris E, Schwarz S, Eyupoglu I, Ganslandt O, Leis T, et al. Prospective assessment of complications associated with ultrasound activated resorbable pin osteosynthesis in pediatric craniofacial surgery: preliminary results. Neurocirugia. 2011;22(6):498–506.PubMedCrossRef Nkenke E, Vairaktaris E, Schwarz S, Eyupoglu I, Ganslandt O, Leis T, et al. Prospective assessment of complications associated with ultrasound activated resorbable pin osteosynthesis in pediatric craniofacial surgery: preliminary results. Neurocirugia. 2011;22(6):498–506.PubMedCrossRef
27.
go back to reference Reichwein A, Schicho K, Moser D, Seemann R, Poeschl P, Baumann A, et al. Clinical experiences with resorbable ultrasonic-guided, angle-stable osteosynthesis in the panfacial region. J Oral Maxillofac Surg. 2009;67(6):1211–7.PubMedCrossRef Reichwein A, Schicho K, Moser D, Seemann R, Poeschl P, Baumann A, et al. Clinical experiences with resorbable ultrasonic-guided, angle-stable osteosynthesis in the panfacial region. J Oral Maxillofac Surg. 2009;67(6):1211–7.PubMedCrossRef
28.
go back to reference Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17(8):831–9.PubMedCrossRef Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17(8):831–9.PubMedCrossRef
29.
go back to reference Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, et al. Soft tissue reactions of different biodegradable polylactide implants. Biomaterials. 2004;25(2):259–67.PubMedCrossRef Prokop A, Jubel A, Helling HJ, Eibach T, Peters C, Baldus SE, et al. Soft tissue reactions of different biodegradable polylactide implants. Biomaterials. 2004;25(2):259–67.PubMedCrossRef
30.
go back to reference Neumann H, Schulz AP, Gille J, Klinger M, Jurgens C, Reimers N, et al. Refixation of osteochondral fractures by ultrasound-activated, resorbable pins: An ovine in vivo study. Bone Joint Res. 2013;2(2):26–32.PubMedCentralPubMedCrossRef Neumann H, Schulz AP, Gille J, Klinger M, Jurgens C, Reimers N, et al. Refixation of osteochondral fractures by ultrasound-activated, resorbable pins: An ovine in vivo study. Bone Joint Res. 2013;2(2):26–32.PubMedCentralPubMedCrossRef
31.
go back to reference Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96(3 Suppl):309–12.PubMed Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg. 2002;96(3 Suppl):309–12.PubMed
32.
go back to reference Paech A, Wilde E, Schulz AP, Heinrichs G, Wendlandt R, Queitsch C, et al. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures–a biomechanical in-vitro study. Eur J Med Res. 2010;15(4):174–9.PubMedCentralPubMedCrossRef Paech A, Wilde E, Schulz AP, Heinrichs G, Wendlandt R, Queitsch C, et al. Biopolymer augmentation of the lag screw in the treatment of femoral neck fractures–a biomechanical in-vitro study. Eur J Med Res. 2010;15(4):174–9.PubMedCentralPubMedCrossRef
33.
go back to reference Kock H-J, Pokinskyj P, Wenz R, Linhart W. Screw fixation in cancellous osteoporotic bone - first in vitro results with a novel augmentation material. Eur J Trauma. 2001;27(5):250–6. Kock H-J, Pokinskyj P, Wenz R, Linhart W. Screw fixation in cancellous osteoporotic bone - first in vitro results with a novel augmentation material. Eur J Trauma. 2001;27(5):250–6.
34.
go back to reference Huang HL, Tsai MT, Su KC, Li YF, Hsu JT, Chang CH, et al. Relation between initial implant stability quotient and bone-implant contact percentage: an in vitro model study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;116(5):e356-61.PubMed Huang HL, Tsai MT, Su KC, Li YF, Hsu JT, Chang CH, et al. Relation between initial implant stability quotient and bone-implant contact percentage: an in vitro model study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;116(5):e356-61.PubMed
Metadata
Title
Osteosynthesis-screw augmentation by ultrasound-activated biopolymer - an ovine in vivo study assessing biocompatibility and bone-to-implant contact
Authors
Hanjo Neumann
Stefan Breer
Nils Reimers
Richard Kasch
Arndt-Peter Schulz
Benjamin Kienast
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0156-1

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue