Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2014

Open Access 01-12-2014 | Research article

Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells

Authors: Kohei Ishihara, Koichi Nakayama, Shizuka Akieda, Shuichi Matsuda, Yukihide Iwamoto

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2014

Login to get access

Abstract

Background

In recent years, several methods have been developed for repairing full-thickness cartilage defects by tissue engineering using mesenchymal stem cells. Most of these use scaffolds to achieve sufficient thickness. However, considering the potential influence of scaffolds on the surrounding microenvironment, as well as immunological issues, it is desirable to develop a scaffold-free technique. In this study, we developed a novel technique, a scaffold-free autologous construct derived from bone marrow-derived mesenchymal stem cells (BM-MSCs), and successfully use this technique to regenerate cartilage and subchondral bone to repair an osteochondral defect in rabbit knees.

Methods

BM-MSCs were isolated from bone marrow liquid aspirated from the iliac crest of rabbits. After expansion in culture dishes and re-suspension in 96-well plates, the cells spontaneously aggregated into a spheroid-like structure. The spheroids were loaded into a tube-shaped Teflon mold with a 5-mm height and maintained under air-liquid interface conditions. These loaded spheroids fused with each other, resulting in a cylinder-shaped construct made of fused cells that conformed to the inner shape of the mold. The construct was implanted into an osteochondral defect in rabbit knees and histologically analyzed 24 and 52 weeks after implantation using Wakitani's scoring system.

Results

Both bone and cartilage were regenerated, maintaining a constant thickness of cartilage. The mean histological score was 10±1.7 in the 24-week group and 9.7±0.6 in the 52-week group. There was no significant difference between the 24- and 52-week groups in either parameter of the score, indicating that no deterioration of the repaired tissue occurred during the intervening period.

Conclusions

Using our novel technique, which employs a three-dimensional scaffold-free autologous construct derived from BM-MSCs, we successfully achieved simultaneous regeneration of bone and cartilage for up to 1 year in vivo. This method has potential for clinical use as a safe and effective method for repairing bone and cartilage defects.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed Buckwalter JA, Mankin HJ: Articular cartilage repair and transplantation. Arthritis Rheum. 1998, 41: 1331-1342. 10.1002/1529-0131(199808)41:8<1331::AID-ART2>3.0.CO;2-J.CrossRefPubMed
2.
go back to reference Matsusue Y, Yamamuro T, Hama H: Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy. 1993, 9: 318-321. 10.1016/S0749-8063(05)80428-1.CrossRefPubMed Matsusue Y, Yamamuro T, Hama H: Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy. 1993, 9: 318-321. 10.1016/S0749-8063(05)80428-1.CrossRefPubMed
3.
go back to reference Steadman JR, Briggs KK, Rodrigo JJ: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003, 19: 477-484. 10.1053/jars.2003.50112.CrossRefPubMed Steadman JR, Briggs KK, Rodrigo JJ: Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003, 19: 477-484. 10.1053/jars.2003.50112.CrossRefPubMed
4.
go back to reference Brittberg M, Lindahl A, Nilsson A: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994, 331: 889-895. 10.1056/NEJM199410063311401.CrossRefPubMed
5.
go back to reference Kreuz P, Steinwachs M, Erggelet C, Krause S, Konrad G, Uhl M, Sudkamp N: Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006, 14: 1119-1125. 10.1016/j.joca.2006.05.003.CrossRefPubMed Kreuz P, Steinwachs M, Erggelet C, Krause S, Konrad G, Uhl M, Sudkamp N: Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006, 14: 1119-1125. 10.1016/j.joca.2006.05.003.CrossRefPubMed
6.
go back to reference Bentley G, Biant LC, Carrington RWJ, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J: A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg (Br). 2003, 85-B: 223-230. 10.1302/0301-620X.85B2.13543.CrossRef Bentley G, Biant LC, Carrington RWJ, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J: A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg (Br). 2003, 85-B: 223-230. 10.1302/0301-620X.85B2.13543.CrossRef
7.
go back to reference Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O: Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004, 86: 455-464.PubMed Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grøntvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O: Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004, 86: 455-464.PubMed
8.
go back to reference Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K: Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg (Br). 1989, 71: 74-80. Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K: Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg (Br). 1989, 71: 74-80.
9.
go back to reference Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994, 76: 579-592.PubMed Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM: Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994, 76: 579-592.PubMed
10.
go back to reference Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, Mark von der K, Sekiya I: Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007, 25: 689-696. 10.1634/stemcells.2006-0281.CrossRefPubMed Koga H, Muneta T, Ju YJ, Nagase T, Nimura A, Mochizuki T, Ichinose S, Mark von der K, Sekiya I: Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007, 25: 689-696. 10.1634/stemcells.2006-0281.CrossRefPubMed
13.
go back to reference Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J: Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun. 2006, 349: 723-731. 10.1016/j.bbrc.2006.08.096.CrossRefPubMed Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J: Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun. 2006, 349: 723-731. 10.1016/j.bbrc.2006.08.096.CrossRefPubMed
14.
go back to reference Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N: Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007, 28: 5462-5470. 10.1016/j.biomaterials.2007.08.030.CrossRefPubMed Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N: Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007, 28: 5462-5470. 10.1016/j.biomaterials.2007.08.030.CrossRefPubMed
15.
go back to reference Cheuk Y-C, Wong MW-N, Lee K-M, Fu S-C: Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J Orthop Res. 2011, 29: 1343-1350. 10.1002/jor.21339.CrossRefPubMed Cheuk Y-C, Wong MW-N, Lee K-M, Fu S-C: Use of allogeneic scaffold-free chondrocyte pellet in repair of osteochondral defect in a rabbit model. J Orthop Res. 2011, 29: 1343-1350. 10.1002/jor.21339.CrossRefPubMed
16.
go back to reference Nakamura T, Sekiya I, Muneta T, Hatsushika D, Horie M, Tsuji K, Kawarasaki T, Watanabe A, Hishikawa S, Fujimoto Y, Tanaka H, Kobayashi E: Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012, 14: 327-338. 10.3109/14653249.2011.638912.PubMedCentralCrossRefPubMed Nakamura T, Sekiya I, Muneta T, Hatsushika D, Horie M, Tsuji K, Kawarasaki T, Watanabe A, Hishikawa S, Fujimoto Y, Tanaka H, Kobayashi E: Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012, 14: 327-338. 10.3109/14653249.2011.638912.PubMedCentralCrossRefPubMed
17.
go back to reference Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW, Niyibizi C, Huard J: Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol. 2002, 29: 1920-1930.PubMed Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han CW, Niyibizi C, Huard J: Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol. 2002, 29: 1920-1930.PubMed
18.
go back to reference Benya P: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.CrossRefPubMed Benya P: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.CrossRefPubMed
19.
go back to reference Takazawa K, Adachi N, Deie M, Kamei G, Uchio Y, Iwasa J, Kumahashi N, Tadenuma T, Kuwata S, Yasuda K, Tohyama H, Minami A, Muneta T, Takahashi S, Ochi M: Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: prospective 6-year follow-up study. J Orthop Sci. 2012, 17: 413-424. 10.1007/s00776-012-0231-y.PubMedCentralCrossRefPubMed Takazawa K, Adachi N, Deie M, Kamei G, Uchio Y, Iwasa J, Kumahashi N, Tadenuma T, Kuwata S, Yasuda K, Tohyama H, Minami A, Muneta T, Takahashi S, Ochi M: Evaluation of magnetic resonance imaging and clinical outcome after tissue-engineered cartilage implantation: prospective 6-year follow-up study. J Orthop Sci. 2012, 17: 413-424. 10.1007/s00776-012-0231-y.PubMedCentralCrossRefPubMed
20.
go back to reference Adachi N, Ochi M, Deie M, Nakamae A, Kamei G, Uchio Y, Iwasa J: Implantation of tissue-engineered cartilage-like tissue for the treatment for full-thickness cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc. 2014, 22: 1241-1248. 10.1007/s00167-013-2521-0.CrossRefPubMed Adachi N, Ochi M, Deie M, Nakamae A, Kamei G, Uchio Y, Iwasa J: Implantation of tissue-engineered cartilage-like tissue for the treatment for full-thickness cartilage defects of the knee. Knee Surg Sports Traumatol Arthrosc. 2014, 22: 1241-1248. 10.1007/s00167-013-2521-0.CrossRefPubMed
21.
go back to reference Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH: Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010, 38: 1110-1116. 10.1177/0363546509359067.CrossRefPubMed Nejadnik H, Hui JH, Feng Choong EP, Tai B-C, Lee EH: Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010, 38: 1110-1116. 10.1177/0363546509359067.CrossRefPubMed
22.
go back to reference Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85-A (Suppl 2): 17-24.PubMed Peterson L, Minas T, Brittberg M, Lindahl A: Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003, 85-A (Suppl 2): 17-24.PubMed
23.
go back to reference Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA: Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence. J Gerontol A Biol Sci Med Sci. 2004, 59: 324-337. 10.1093/gerona/59.4.B324.CrossRefPubMed Martin JA, Klingelhutz AJ, Moussavi-Harami F, Buckwalter JA: Effects of oxidative damage and telomerase activity on human articular cartilage chondrocyte senescence. J Gerontol A Biol Sci Med Sci. 2004, 59: 324-337. 10.1093/gerona/59.4.B324.CrossRefPubMed
24.
go back to reference Rouwkema J, Koopman B, Blitterswijk C, Dhert W, Malda J: Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2010, 26: 163-178. 10.5661/bger-26-163.CrossRefPubMed Rouwkema J, Koopman B, Blitterswijk C, Dhert W, Malda J: Supply of nutrients to cells in engineered tissues. Biotechnol Genet Eng Rev. 2010, 26: 163-178. 10.5661/bger-26-163.CrossRefPubMed
25.
go back to reference Vasara AI, Hyttinen MM, Lammi MJ, Lammi PE, Långsjö TK, Lindahl A, Peterson L, Kellomäki M, Konttinen YT, Helminen HJ, Kiviranta I: Subchondral bone reaction associated with chondral defect and attempted cartilage repair in goats. Calcif Tissue Int. 2004, 74: 107-114. 10.1007/s00223-002-2153-8.CrossRefPubMed Vasara AI, Hyttinen MM, Lammi MJ, Lammi PE, Långsjö TK, Lindahl A, Peterson L, Kellomäki M, Konttinen YT, Helminen HJ, Kiviranta I: Subchondral bone reaction associated with chondral defect and attempted cartilage repair in goats. Calcif Tissue Int. 2004, 74: 107-114. 10.1007/s00223-002-2153-8.CrossRefPubMed
Metadata
Title
Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells
Authors
Kohei Ishihara
Koichi Nakayama
Shizuka Akieda
Shuichi Matsuda
Yukihide Iwamoto
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2014
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-014-0098-z

Other articles of this Issue 1/2014

Journal of Orthopaedic Surgery and Research 1/2014 Go to the issue

Reviewer Acknowledgement

Reviewer acknowledgement 2013