Skip to main content
Top
Published in: World Journal of Emergency Surgery 1/2018

Open Access 01-12-2018 | Research article

Clinical prediction score for superficial surgical site infection after appendectomy in adults with complicated appendicitis

Authors: Pinit Noorit, Boonying Siribumrungwong, Ammarin Thakkinstian

Published in: World Journal of Emergency Surgery | Issue 1/2018

Login to get access

Abstract

Background

Superficial surgical site infection (SSI) is common after appendectomy. This study aims to determine a clinical prediction score for SSI after appendectomy in complicated appendicitis.

Methods

Data from randomized controlled trial of delayed versus primary wound closures in complicated appendicitis was used. Nineteen patient- and operative-related predictors were selected in the logit model. Clinical prediction score was then constructed using coefficients of significant predictors. Risk stratification was done by receiver operating characteristic (ROC) curve analysis. Bootstrap technique was used to internal validate the score.

Results

Among 607 patients, the SSI incidence was 8.7% (95% CI 6.4, 11.2). Four predictors were significantly associated with SSI, i.e., presence of diabetes, incisional length > 7 cm, fecal contamination, and operative time > 75 min with the odds ratio of 2.6 (95% CI 1.2, 5.9), 2.8 (1.5, 5.4), 3.6 (1.9, 6.8), and 3.4 (1.8, 6.5), respectively. Clinical prediction score ranged from 0 to 4.5 with its discrimination concordance (C) statistic of 0.74 (95% CI 0.66, 0.81). Risk stratification classified patients into very low, low, moderate, and high risk groups for SSI when none, one, two, and more than two risk factors were presented with positive likelihood ratio of 1.00, 1.45, 3.32, and 9.28, respectively. A bootstrap demonstrated well calibration and thus good internal validation.

Conclusions

Diabetes, incisional length, fecal contamination, and operative time could be used to predict SSI with acceptable discrimination. This clinical risk prediction should be useful in prediction of SSI. However, external validation should be performed.

Trial registration

ClinicalTrials.​gov (ID NCT01659983), registered August 8, 2012
Appendix
Available only for authorised users
Literature
1.
go back to reference Siribumrungwong B, Srikuea K, Thakkinstian A. Comparison of superficial surgical site infection between delayed primary and primary wound closures in ruptured appendicitis. Asian J Surg. 2014;37:120–4.CrossRefPubMed Siribumrungwong B, Srikuea K, Thakkinstian A. Comparison of superficial surgical site infection between delayed primary and primary wound closures in ruptured appendicitis. Asian J Surg. 2014;37:120–4.CrossRefPubMed
2.
go back to reference Siribumrungwong B, Noorit P, Wilasrusmee C, Thakkinstian A. A systematic review and meta-analysis of randomised controlled trials of delayed primary wound closure in contaminated abdominal wounds. World J Emerg Surg. 2014;9:49.CrossRefPubMedPubMedCentral Siribumrungwong B, Noorit P, Wilasrusmee C, Thakkinstian A. A systematic review and meta-analysis of randomised controlled trials of delayed primary wound closure in contaminated abdominal wounds. World J Emerg Surg. 2014;9:49.CrossRefPubMedPubMedCentral
3.
go back to reference Sullivan E, Gupta A, Cook CH. Cost and consequences of surgical site infections: a call to arms. Surg Infect. 2017;18:451–4.CrossRef Sullivan E, Gupta A, Cook CH. Cost and consequences of surgical site infections: a call to arms. Surg Infect. 2017;18:451–4.CrossRef
4.
go back to reference Ejaz A, Schmidt C, Johnston FM, Frank SM, Pawlik TM. Risk factors and prediction model for inpatient surgical site infection after major abdominal surgery. J Surg Res. 2017;217:153–9.CrossRefPubMed Ejaz A, Schmidt C, Johnston FM, Frank SM, Pawlik TM. Risk factors and prediction model for inpatient surgical site infection after major abdominal surgery. J Surg Res. 2017;217:153–9.CrossRefPubMed
5.
go back to reference Pedroso-Fernandez Y, Aguirre-Jaime A, Ramos MJ, Hernandez M, Cuervo M, Bravo A, Carrillo A. Prediction of surgical site infection after colorectal surgery. Am J Infect Control. 2016;44:450–4.CrossRefPubMed Pedroso-Fernandez Y, Aguirre-Jaime A, Ramos MJ, Hernandez M, Cuervo M, Bravo A, Carrillo A. Prediction of surgical site infection after colorectal surgery. Am J Infect Control. 2016;44:450–4.CrossRefPubMed
6.
go back to reference Alavi K, Sturrock PR, Sweeney WB, Maykel JA, Cervera-Servin JA, Tseng J, Cook EF. A simple risk score for predicting surgical site infections in inflammatory bowel disease. Dis Colon rectum. 2010;53:1480–6.CrossRefPubMed Alavi K, Sturrock PR, Sweeney WB, Maykel JA, Cervera-Servin JA, Tseng J, Cook EF. A simple risk score for predicting surgical site infections in inflammatory bowel disease. Dis Colon rectum. 2010;53:1480–6.CrossRefPubMed
7.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement. Br J Surg. 2015;102:148–58.CrossRefPubMed Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement. Br J Surg. 2015;102:148–58.CrossRefPubMed
8.
go back to reference Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect Control Hosp Epidemiol. 2011;32:970–86.CrossRefPubMed Mu Y, Edwards JR, Horan TC, Berrios-Torres SI, Fridkin SK. Improving risk-adjusted measures of surgical site infection for the national healthcare safety network. Infect Control Hosp Epidemiol. 2011;32:970–86.CrossRefPubMed
9.
go back to reference de Oliveira AC, Ciosak SI, Ferraz EM, Grinbaum RS. Surgical site infection in patients submitted to digestive surgery: risk prediction and the NNIS risk index. Am J Infect Control. 2006;34:201–7.CrossRefPubMed de Oliveira AC, Ciosak SI, Ferraz EM, Grinbaum RS. Surgical site infection in patients submitted to digestive surgery: risk prediction and the NNIS risk index. Am J Infect Control. 2006;34:201–7.CrossRefPubMed
10.
go back to reference Neumayer L, Hosokawa P, Itani K, El-Tamer M, Henderson WG, Khuri SF. Multivariable predictors of postoperative surgical site infection after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007;204:1178–87.CrossRefPubMed Neumayer L, Hosokawa P, Itani K, El-Tamer M, Henderson WG, Khuri SF. Multivariable predictors of postoperative surgical site infection after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg. 2007;204:1178–87.CrossRefPubMed
11.
go back to reference van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): a model to predict the risk of surgical site infections. PLoS One. 2013;8:e67167.CrossRefPubMedPubMedCentral van Walraven C, Musselman R. The Surgical Site Infection Risk Score (SSIRS): a model to predict the risk of surgical site infections. PLoS One. 2013;8:e67167.CrossRefPubMedPubMedCentral
12.
go back to reference Siribumrungwong B, Chantip A, Noorit P, Wilasrusmee C, Ungpinitpong W, Chotiya P, Leerapan B, Woratanarat P, McEvoy M, Attia J, Thakkinstian A. Comparison of superficial surgical site infection between delayed primary versus primary wound closure in complicated appendicitis: a randomized controlled trial. Ann Surg. 2018; 267(4):631–37. Siribumrungwong B, Chantip A, Noorit P, Wilasrusmee C, Ungpinitpong W, Chotiya P, Leerapan B, Woratanarat P, McEvoy M, Attia J, Thakkinstian A. Comparison of superficial surgical site infection between delayed primary versus primary wound closure in complicated appendicitis: a randomized controlled trial. Ann Surg. 2018; 267(4):631–37.
13.
go back to reference Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.CrossRefPubMed Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.CrossRefPubMed
14.
go back to reference Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64:993–1000.CrossRefPubMed Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol. 2011;64:993–1000.CrossRefPubMed
15.
go back to reference Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.CrossRefPubMed Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.CrossRefPubMed
16.
go back to reference System NNIS. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.CrossRef System NNIS. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–85.CrossRef
17.
go back to reference Martin ET, Kaye KS, Knott C, Nguyen H, Santarossa M, Evans R, Bertran E, Jaber L. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2016;37:88–99.CrossRefPubMed Martin ET, Kaye KS, Knott C, Nguyen H, Santarossa M, Evans R, Bertran E, Jaber L. Diabetes and risk of surgical site infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2016;37:88–99.CrossRefPubMed
18.
19.
go back to reference Itatsu K, Sugawara G, Kaneoka Y, Kato T, Takeuchi E, Kanai M, Hasegawa H, Arai T, Yokoyama Y, Nagino M. Risk factors for incisional surgical site infections in elective surgery for colorectal cancer: focus on intraoperative meticulous wound management. Surg Today. 2014;44:1242–52.CrossRefPubMed Itatsu K, Sugawara G, Kaneoka Y, Kato T, Takeuchi E, Kanai M, Hasegawa H, Arai T, Yokoyama Y, Nagino M. Risk factors for incisional surgical site infections in elective surgery for colorectal cancer: focus on intraoperative meticulous wound management. Surg Today. 2014;44:1242–52.CrossRefPubMed
20.
go back to reference Imai E, Ueda M, Kanao K, Miyaki K, Kubota T, Kitajima M. Surgical site infection surveillance after open gastrectomy and risk factors for surgical site infection. J Infect Chemother. 2005;11:141–5.CrossRefPubMed Imai E, Ueda M, Kanao K, Miyaki K, Kubota T, Kitajima M. Surgical site infection surveillance after open gastrectomy and risk factors for surgical site infection. J Infect Chemother. 2005;11:141–5.CrossRefPubMed
21.
go back to reference Waisbren E, Rosen H, Bader AM, Lipsitz SR, Rogers SO Jr, Eriksson E. Percent body fat and prediction of surgical site infection. J Am Coll Surg. 2010;210:381–9.CrossRefPubMed Waisbren E, Rosen H, Bader AM, Lipsitz SR, Rogers SO Jr, Eriksson E. Percent body fat and prediction of surgical site infection. J Am Coll Surg. 2010;210:381–9.CrossRefPubMed
22.
go back to reference Tserenpuntsag B, Haley V, Van Antwerpen C, Doughty D, Gase KA, Hazamy PA, Tsivitis M. Surgical site infection risk factors identified for patients undergoing colon procedures, New York State 2009–2010. Infect Control Hosp Epidemiol. 2014;35:1006–12.CrossRefPubMed Tserenpuntsag B, Haley V, Van Antwerpen C, Doughty D, Gase KA, Hazamy PA, Tsivitis M. Surgical site infection risk factors identified for patients undergoing colon procedures, New York State 2009–2010. Infect Control Hosp Epidemiol. 2014;35:1006–12.CrossRefPubMed
23.
go back to reference Fujii T, Tsutsumi S, Matsumoto A, Fukasawa T, Tabe Y, Yajima R, Asao T, Kuwano H. Thickness of subcutaneous fat as a strong risk factor for wound infections in elective colorectal surgery: impact of prediction using preoperative CT. Dig Surg. 2010;27:331–5.CrossRefPubMed Fujii T, Tsutsumi S, Matsumoto A, Fukasawa T, Tabe Y, Yajima R, Asao T, Kuwano H. Thickness of subcutaneous fat as a strong risk factor for wound infections in elective colorectal surgery: impact of prediction using preoperative CT. Dig Surg. 2010;27:331–5.CrossRefPubMed
24.
go back to reference Jaschinski T, Mosch C, Eikermann M, Neugebauer EA. Laparoscopic versus open appendectomy in patients with suspected appendicitis: a systematic review of meta-analyses of randomised controlled trials. BMC Gastroenterol. 2015;15:48.CrossRefPubMedPubMedCentral Jaschinski T, Mosch C, Eikermann M, Neugebauer EA. Laparoscopic versus open appendectomy in patients with suspected appendicitis: a systematic review of meta-analyses of randomised controlled trials. BMC Gastroenterol. 2015;15:48.CrossRefPubMedPubMedCentral
25.
go back to reference Camilleri-Brennan J, Drake T, Spence R, Bhangu A, Harrison E. Management and outcomes from appendectomy: an international, prospective, multicentre study. S Afr J Surg. 2017;55:86–7.PubMed Camilleri-Brennan J, Drake T, Spence R, Bhangu A, Harrison E. Management and outcomes from appendectomy: an international, prospective, multicentre study. S Afr J Surg. 2017;55:86–7.PubMed
26.
go back to reference Jaeschke RGG, Lijmer J. Diagnostic tests. In: Users’ guides to the medical literature: a manual for evidence-based clinical practice. Chicago: United States of America; 2008. Jaeschke RGG, Lijmer J. Diagnostic tests. In: Users’ guides to the medical literature: a manual for evidence-based clinical practice. Chicago: United States of America; 2008.
27.
go back to reference Safari S, Baratloo A, Elfil M, Negida A. Evidence based emergency medicine; part 4: pre-test and post-test probabilities and Fagan’s nomogram. Emerg (Tehran). 2016;4:48–51. Safari S, Baratloo A, Elfil M, Negida A. Evidence based emergency medicine; part 4: pre-test and post-test probabilities and Fagan’s nomogram. Emerg (Tehran). 2016;4:48–51.
28.
go back to reference Sajid MS, Rathore MA, Sains P, Singh KK. A systematic review of clinical effectiveness of wound edge protector devices in reducing surgical site infections in patients undergoing abdominal surgery. Updat Surg. 2017;69:21–8.CrossRef Sajid MS, Rathore MA, Sains P, Singh KK. A systematic review of clinical effectiveness of wound edge protector devices in reducing surgical site infections in patients undergoing abdominal surgery. Updat Surg. 2017;69:21–8.CrossRef
29.
go back to reference Manzoor B, Heywood N, Sharma A. Review of subcutaneous wound drainage in reducing surgical site infections after laparotomy. Surg Res Pract. 2015;2015:715803.PubMedPubMedCentral Manzoor B, Heywood N, Sharma A. Review of subcutaneous wound drainage in reducing surgical site infections after laparotomy. Surg Res Pract. 2015;2015:715803.PubMedPubMedCentral
30.
go back to reference Towfigh S, Clarke T, Yacoub W, Pooli AH, Mason RJ, Katkhouda N, Berne TV. Significant reduction of wound infections with daily probing of contaminated wounds: a prospective randomized clinical trial. Arch Surg. 2011;146:448–52.CrossRefPubMed Towfigh S, Clarke T, Yacoub W, Pooli AH, Mason RJ, Katkhouda N, Berne TV. Significant reduction of wound infections with daily probing of contaminated wounds: a prospective randomized clinical trial. Arch Surg. 2011;146:448–52.CrossRefPubMed
31.
go back to reference Andersson AE, Bergh I, Karlsson J, Nilsson K. Patients’ experiences of acquiring a deep surgical site infection: an interview study. Am J Infect Control. 2010;38:711–7.CrossRefPubMed Andersson AE, Bergh I, Karlsson J, Nilsson K. Patients’ experiences of acquiring a deep surgical site infection: an interview study. Am J Infect Control. 2010;38:711–7.CrossRefPubMed
32.
go back to reference Pham JC, Ashton MJ, Kimata C, Lin DM, Nakamoto BK. Surgical site infection: comparing surgeon versus patient self-report. J Surg Res. 2016;202:95–102.CrossRefPubMed Pham JC, Ashton MJ, Kimata C, Lin DM, Nakamoto BK. Surgical site infection: comparing surgeon versus patient self-report. J Surg Res. 2016;202:95–102.CrossRefPubMed
33.
go back to reference Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, Riley RD, Hemingway H, Altman DG. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10:e1001381.CrossRefPubMedPubMedCentral Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, Riley RD, Hemingway H, Altman DG. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10:e1001381.CrossRefPubMedPubMedCentral
Metadata
Title
Clinical prediction score for superficial surgical site infection after appendectomy in adults with complicated appendicitis
Authors
Pinit Noorit
Boonying Siribumrungwong
Ammarin Thakkinstian
Publication date
01-12-2018
Publisher
BioMed Central
Published in
World Journal of Emergency Surgery / Issue 1/2018
Electronic ISSN: 1749-7922
DOI
https://doi.org/10.1186/s13017-018-0186-1

Other articles of this Issue 1/2018

World Journal of Emergency Surgery 1/2018 Go to the issue