Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Benchmarking Monte-Carlo dose calculation for MLC CyberKnife treatments

Authors: P.-H. Mackeprang, D. Vuong, W. Volken, D. Henzen, D. Schmidhalter, M. Malthaner, S. Mueller, D. Frei, W. Kilby, D. M. Aebersold, M. K. Fix, P. Manser

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Vendor-independent Monte Carlo (MC) dose calculation (IDC) for patient-specific quality assurance of multi-leaf collimator (MLC) based CyberKnife treatments is used to benchmark and validate the commercial MC dose calculation engine for MLC based treatments built into the CyberKnife treatment planning system (Precision MC).

Methods

The benchmark included dose profiles in water in 15 mm depth and depth dose curves of rectangular MLC shaped fields ranging from 7.6 mm × 7.7 mm to 115.0 mm  × 100.1 mm, which were compared between IDC, Precision MC and measurements in terms of dose difference and distance to agreement. Dose distributions of three phantom cases and seven clinical lung cases were calculated using both IDC and Precision MC. The lung PTVs ranged from 14 cm3 to 93 cm3. Quantitative comparison of these dose distributions was performed using dose-volume parameters and 3D gamma analysis with 2% global dose difference and 1 mm distance criteria and a global 10% dose threshold. Time to calculate dose distributions was recorded and efficiency was assessed.

Results

Absolute dose profiles in 15 mm depth in water showed agreement between Precision MC and IDC within 3.1% or 1 mm. Depth dose curves agreed within 2.3% / 1 mm. For the phantom and clinical lung cases, mean PTV doses differed from − 1.0 to + 2.3% between IDC and Precision MC and gamma passing rates were > =98.1% for all multiple beam treatment plans. For the lung cases, lung V20 agreed within ±1.5%. Calculation times ranged from 2.2 min (for 39 cm3 PTV at 1.0 × 1.0 × 2.5 mm3 native CT resolution) to 8.1 min (93 cm3 at 1.1 × 1.1 × 1.0 mm3), at 2% uncertainty for Precision MC for the 7 examined lung cases and 4–6 h for IDC, which, however, is not optimized for efficiency but used as a gold standard for accuracy.

Conclusions

Both accuracy and efficiency of Precision MC in the context of MLC based planning for the CyberKnife M6 system were benchmarked against MC based IDC framework. Precision MC is used in clinical practice at our institute.
Literature
1.
go back to reference Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.PubMedCrossRef Dieterich S, Cavedon C, Chuang CF, Cohen AB, Garrett JA, Lee CL, et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys. 2011;38(6):2914–36.PubMedCrossRef
2.
go back to reference Lippitz B, Lindquist C, Paddick I, Peterson D, O’Neill K, Beaney R, et al. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev. 2013;40(1):48–59.PubMedCrossRef Lippitz B, Lindquist C, Paddick I, Peterson D, O’Neill K, Beaney R, et al. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat Rev. 2013;40(1):48–59.PubMedCrossRef
3.
go back to reference Soares HP, Kumar A, Daniels S, Swann S, Cantor A, Hozo I, et al. Evaluation of new treatments in radiation oncology: are they better than standard treatments? JAMA. 2005;293(8):970–8.PubMedPubMedCentralCrossRef Soares HP, Kumar A, Daniels S, Swann S, Cantor A, Hozo I, et al. Evaluation of new treatments in radiation oncology: are they better than standard treatments? JAMA. 2005;293(8):970–8.PubMedPubMedCentralCrossRef
4.
go back to reference Zhang Y, Brandner E, Ozhasoglu C, Lalonde R, Heron DE, Huq MS. A 3D correction method for predicting the readings of a PinPoint chamber on the CyberKnife® M6™ machine. Phys Med Biol. 2018;63(4):045010.PubMedCrossRef Zhang Y, Brandner E, Ozhasoglu C, Lalonde R, Heron DE, Huq MS. A 3D correction method for predicting the readings of a PinPoint chamber on the CyberKnife® M6™ machine. Phys Med Biol. 2018;63(4):045010.PubMedCrossRef
5.
go back to reference Renner F. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy. Z Med Phys. 2016;26(3):209–23.PubMedCrossRef Renner F. Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy. Z Med Phys. 2016;26(3):209–23.PubMedCrossRef
6.
go back to reference Bagheri H, Soleimani A, Gharehaghaji N, Mesbahi A, Manouchehri F, Shekarchi B, et al. An overview on small-field dosimetry in photon beam radiotherapy: developments and challenges. J Cancer Res Ther. 2017;13(2):175–85.PubMedCrossRef Bagheri H, Soleimani A, Gharehaghaji N, Mesbahi A, Manouchehri F, Shekarchi B, et al. An overview on small-field dosimetry in photon beam radiotherapy: developments and challenges. J Cancer Res Ther. 2017;13(2):175–85.PubMedCrossRef
7.
go back to reference Fix MK, Manser P, Frei D, Volken W, Mini R, Born EJ. An efficient framework for photon Monte Carlo treatment planning. Phys Med Biol. 2007;52(19):N425–37.PubMedCrossRef Fix MK, Manser P, Frei D, Volken W, Mini R, Born EJ. An efficient framework for photon Monte Carlo treatment planning. Phys Med Biol. 2007;52(19):N425–37.PubMedCrossRef
8.
go back to reference Magaddino V, Manser P, Frei D, Volken W, Schmidhalter D, Hirschi L, et al. Validation of the Swiss Monte Carlo plan for a static and dynamic 6 MV photon beam. Z Med Phys. 2011;21(2):124–34.PubMedCrossRef Magaddino V, Manser P, Frei D, Volken W, Schmidhalter D, Hirschi L, et al. Validation of the Swiss Monte Carlo plan for a static and dynamic 6 MV photon beam. Z Med Phys. 2011;21(2):124–34.PubMedCrossRef
9.
go back to reference Schmidhalter D, Manser P, Frei D, Volken W, Fix MK. Comparison of Monte Carlo collimator transport methods for photon treatment planning in radiotherapy. Med Phys. 2010;37(2):492–504.PubMedCrossRef Schmidhalter D, Manser P, Frei D, Volken W, Fix MK. Comparison of Monte Carlo collimator transport methods for photon treatment planning in radiotherapy. Med Phys. 2010;37(2):492–504.PubMedCrossRef
10.
go back to reference Manser P, Frauchiger D, Frei D, Volken W, Terribilini D, Fix MK. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo. Z Med Phys. 2019;29(1):31–8.PubMedCrossRef Manser P, Frauchiger D, Frei D, Volken W, Terribilini D, Fix MK. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo. Z Med Phys. 2019;29(1):31–8.PubMedCrossRef
11.
go back to reference Mackeprang P-H, Vuong D, Volken W, Henzen D, Schmidhalter D, Malthaner M, et al. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy. Phys Med Biol. 2018;63(1):015015.CrossRef Mackeprang P-H, Vuong D, Volken W, Henzen D, Schmidhalter D, Malthaner M, et al. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy. Phys Med Biol. 2018;63(1):015015.CrossRef
12.
go back to reference Ma C-MC, Li JS, Deng J, Fan J. Implementation of Monte Carlo dose calculation for CyberKnife treatment planning. J Phys Conf Ser. 2008;102(1):012016.CrossRef Ma C-MC, Li JS, Deng J, Fan J. Implementation of Monte Carlo dose calculation for CyberKnife treatment planning. J Phys Conf Ser. 2008;102(1):012016.CrossRef
13.
go back to reference Reynaert N, Demol B, Charoy M, Bouchoucha S, Crop F, Wagner A, et al. Clinical implementation of a Monte Carlo based treatment plan QA platform for validation of Cyberknife and Tomotherapy treatments. Phys Medica. 2016;32(10):1225–37.CrossRef Reynaert N, Demol B, Charoy M, Bouchoucha S, Crop F, Wagner A, et al. Clinical implementation of a Monte Carlo based treatment plan QA platform for validation of Cyberknife and Tomotherapy treatments. Phys Medica. 2016;32(10):1225–37.CrossRef
14.
go back to reference Pan Y, Yang R, Li J, Zhang X, Liu L, Wang J. Film-based dose validation of Monte Carlo algorithm for Cyberknife system with a CIRS thorax phantom. J Appl Clin Med Phys. 2018;19(3):142–8.PubMedPubMedCentralCrossRef Pan Y, Yang R, Li J, Zhang X, Liu L, Wang J. Film-based dose validation of Monte Carlo algorithm for Cyberknife system with a CIRS thorax phantom. J Appl Clin Med Phys. 2018;19(3):142–8.PubMedPubMedCentralCrossRef
15.
go back to reference Wilcox EE, Daskalov GM. Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by Cyberknife. Med Phys. 2008;35(6):2259–66.PubMedCrossRef Wilcox EE, Daskalov GM. Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by Cyberknife. Med Phys. 2008;35(6):2259–66.PubMedCrossRef
16.
go back to reference Sharma S, Ott J, Williams J, Dickow D. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms. Med Dosim. 2011;36(4):347–50.PubMedCrossRef Sharma S, Ott J, Williams J, Dickow D. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms. Med Dosim. 2011;36(4):347–50.PubMedCrossRef
17.
go back to reference Schmidhalter D, Henzen D, Malthaner M, Herrmann E, Angelmann S, Hemmatazad H, et al. EP-2185: Evaluation of the CK-11 version for the Cyberknife M6. Radiother Oncol. 2018;127:S1207.CrossRef Schmidhalter D, Henzen D, Malthaner M, Herrmann E, Angelmann S, Hemmatazad H, et al. EP-2185: Evaluation of the CK-11 version for the Cyberknife M6. Radiother Oncol. 2018;127:S1207.CrossRef
18.
go back to reference Heidorn SC, Kilby W, Fürweger C. Novel Monte Carlo dose calculation algorithm for robotic radiosurgery with multi leaf collimator: Dosimetric evaluation. Phys Medica. 2018;55:25–32.CrossRef Heidorn SC, Kilby W, Fürweger C. Novel Monte Carlo dose calculation algorithm for robotic radiosurgery with multi leaf collimator: Dosimetric evaluation. Phys Medica. 2018;55:25–32.CrossRef
19.
go back to reference Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM task group no. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.PubMedCrossRef Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Report of the AAPM task group no. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.PubMedCrossRef
20.
go back to reference Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–61.PubMedCrossRef Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–61.PubMedCrossRef
21.
go back to reference Wagner A, Crop F, Mirabel X, Tailly C, Reynaert N. Use of an in-house Monte Carlo platform to assess the clinical impact of algorithm-related dose differences on DVH constraints. Phys Medica. 2017;42:319–26.CrossRef Wagner A, Crop F, Mirabel X, Tailly C, Reynaert N. Use of an in-house Monte Carlo platform to assess the clinical impact of algorithm-related dose differences on DVH constraints. Phys Medica. 2017;42:319–26.CrossRef
Metadata
Title
Benchmarking Monte-Carlo dose calculation for MLC CyberKnife treatments
Authors
P.-H. Mackeprang
D. Vuong
W. Volken
D. Henzen
D. Schmidhalter
M. Malthaner
S. Mueller
D. Frei
W. Kilby
D. M. Aebersold
M. K. Fix
P. Manser
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1370-5

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue