Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Circular collimator arc versus dynamic conformal arc treatment planning for linac-based stereotactic radiosurgery of an intracranial small single lesion: a perspective of lesion asymmetry

Authors: Yongsook C. Lee, Yongbok Kim

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Although circular collimator arcs (CCA) and dynamic conformal arcs (DCA) are commonly used linear accelerator-based treatment planning techniques for intracranial stereotactic radiosurgery (SRS) of a small single lesion, these two techniques have not been rigorously compared in terms of tumor shape. Therefore, this study compared clinical CCA plans with re-planned DCA plans using conformity index (CI) and V12Gy (volume of normal brain tissue receiving 12 Gy or higher) from a perspective of asymmetry (Asym) of planning target volume (PTV).

Methods

Ninety-five clinical CCA plans delivered for a small single lesion with PTV size < 1.4 cm3 were selected and re-planned using DCA. PTV Asym (%) was defined and calculated from three dimensions of PTV. A pair of the 95 plans was first considered as one group without grouping and then categorized into two groups with respective to either PTV size or PTV Asym, and four groups with respect to PTV size and PTV Asym. For grouping, median values of PTV size and PTV Asym were used. A non-parametric paired test was performed for CI and V12Gy to compare CCA and DCA plans in each group.

Results

Median values of PTV size and PTV Asym were 0.415 cm3 (range: 0.076 cm3–1.369 cm3) and 6.12% (range: 0.52–25.74%), respectively. DCA plans had a lower average CI value than CCA plans for all groups. CCA plans had a smaller average V12Gy value than DCA plans for lesions with PTV Asym ≤6.12%, while CCA and DCA plans had similar average V12Gy values for lesions with PTV Asym > 6.12%.

Conclusions

The DCA technique is recommended when a lesion has PTV Asym > 6.12% regardless of PTV size. For lesions with PTV Asym ≤6.12%, a technique choice would depend on the preference of CI or V12Gy.
Literature
1.
go back to reference Bohoudi O, Bruynzeel AM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Palacios MA. Isotoxic radiosurgery planning for brain metastases. Radiother Oncol. 2016;120(2):253–7.CrossRef Bohoudi O, Bruynzeel AM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Palacios MA. Isotoxic radiosurgery planning for brain metastases. Radiother Oncol. 2016;120(2):253–7.CrossRef
2.
go back to reference Solberg TD, Boedeker KL, Fogg R, Selch MT, DeSalles AA. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys. 2001;49(5):1481–91.CrossRef Solberg TD, Boedeker KL, Fogg R, Selch MT, DeSalles AA. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys. 2001;49(5):1481–91.CrossRef
3.
go back to reference Cardinale RM, Benedict SH, Wu Q, Zwicker RD, Gaballa HE, Mohan R. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys. 1998;42(2):431–6.CrossRef Cardinale RM, Benedict SH, Wu Q, Zwicker RD, Gaballa HE, Mohan R. A comparison of three stereotactic radiotherapy techniques; ARCS vs. noncoplanar fixed fields vs. intensity modulation. Int J Radiat Oncol Biol Phys. 1998;42(2):431–6.CrossRef
4.
go back to reference Chen CC, Chapman PH, Kooy H, Loeffler JS. Neuroimaging in radiosurgery treatment planning and follow-up evaluation. In: Chin LS, Regine WF, editors. Principles and practice of stereotactic radiosurgery. New York: Springer; 2008. p. 9–23.CrossRef Chen CC, Chapman PH, Kooy H, Loeffler JS. Neuroimaging in radiosurgery treatment planning and follow-up evaluation. In: Chin LS, Regine WF, editors. Principles and practice of stereotactic radiosurgery. New York: Springer; 2008. p. 9–23.CrossRef
5.
go back to reference Yu C, Shepard D. Treatment planning for stereotactic radiosurgery with photon beams. Technol Cancer Res Treat. 2003;2(2):93–104.CrossRef Yu C, Shepard D. Treatment planning for stereotactic radiosurgery with photon beams. Technol Cancer Res Treat. 2003;2(2):93–104.CrossRef
6.
go back to reference Heller C, Yu C, Apuzzo MLJ. Techniques of stereotactic radiosurgery. In: Chin LS, Regine WF, editors. Principles and practice of stereotactic radiosurgery. New York: Springer; 2008. p. 25–30.CrossRef Heller C, Yu C, Apuzzo MLJ. Techniques of stereotactic radiosurgery. In: Chin LS, Regine WF, editors. Principles and practice of stereotactic radiosurgery. New York: Springer; 2008. p. 25–30.CrossRef
7.
go back to reference Ruggieri R, Naccarato S, Mazzola R, Ricchetti F, Corradini S, Fiorentino A, et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique. Radiat Oncol. 2018;13(1):38.CrossRef Ruggieri R, Naccarato S, Mazzola R, Ricchetti F, Corradini S, Fiorentino A, et al. Linac-based VMAT radiosurgery for multiple brain lesions: comparison between a conventional multi-isocenter approach and a new dedicated mono-isocenter technique. Radiat Oncol. 2018;13(1):38.CrossRef
8.
go back to reference Yuan Y, Thomas EM, Clark GA, Markert JM, Fiveash JB, Popple RA. Evaluation of multiple factors affecting normal brain dose in single-isocenter multiple target radiosurgery. J Radiosurg SBRT. 2018;5(2):131–44.PubMedPubMedCentral Yuan Y, Thomas EM, Clark GA, Markert JM, Fiveash JB, Popple RA. Evaluation of multiple factors affecting normal brain dose in single-isocenter multiple target radiosurgery. J Radiosurg SBRT. 2018;5(2):131–44.PubMedPubMedCentral
9.
go back to reference Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys. 1997;37(3):679–88.CrossRef Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys. 1997;37(3):679–88.CrossRef
10.
go back to reference Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys. 1998;40(2):497–505.CrossRef Verhey LJ, Smith V, Serago CF. Comparison of radiosurgery treatment modalities based on physical dose distributions. Int J Radiat Oncol Biol Phys. 1998;40(2):497–505.CrossRef
11.
go back to reference Dellaretti M, Barbosa Pereira JL, Tagawa E, Pedrini M. Stereotactic radiosurgery of intracranial tumors: a comparison of intensity-modulated radiosurgery and dynamic conformational arc. J Radiosurg SBRT. 2012;1(4):273–80.PubMedPubMedCentral Dellaretti M, Barbosa Pereira JL, Tagawa E, Pedrini M. Stereotactic radiosurgery of intracranial tumors: a comparison of intensity-modulated radiosurgery and dynamic conformational arc. J Radiosurg SBRT. 2012;1(4):273–80.PubMedPubMedCentral
12.
go back to reference Hazard LJ, Wang B, Skidmore TB, Chern SS, Salter BJ, Jensen RL, et al. Conformity of LINAC-based stereotactic radiosurgery using dynamic conformal arcs and micro-multileaf collimator. Int J Radiat Oncol Biol Phys. 2009;73(2):562–70.CrossRef Hazard LJ, Wang B, Skidmore TB, Chern SS, Salter BJ, Jensen RL, et al. Conformity of LINAC-based stereotactic radiosurgery using dynamic conformal arcs and micro-multileaf collimator. Int J Radiat Oncol Biol Phys. 2009;73(2):562–70.CrossRef
13.
go back to reference Soisson ET, Mehta MP, Tome WA. A comparison of helical tomotherapy to circular collimator-based linear-accelerator radiosurgery for the treatment of brain metastases. Am J Clin Oncol. 2011;34(4):388–94.CrossRef Soisson ET, Mehta MP, Tome WA. A comparison of helical tomotherapy to circular collimator-based linear-accelerator radiosurgery for the treatment of brain metastases. Am J Clin Oncol. 2011;34(4):388–94.CrossRef
14.
go back to reference Zhao B, Wen N, Chetty IJ, Huang Y, Brown SL, Snyder KC, et al. A prediction model of radiation-induced necrosis for intracranial radiosurgery based on target volume. Med Phys. 2017;44(8):4360–7.CrossRef Zhao B, Wen N, Chetty IJ, Huang Y, Brown SL, Snyder KC, et al. A prediction model of radiation-induced necrosis for intracranial radiosurgery based on target volume. Med Phys. 2017;44(8):4360–7.CrossRef
15.
go back to reference Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64(2):333–42.CrossRef Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64(2):333–42.CrossRef
16.
go back to reference Limon D, McSherry F, Herndon J, Sampson J, Fecci P, Adamson J, et al. Single fraction stereotactic radiosurgery for multiple brain metastases. Adv Radiat Oncol. 2017;2(4):555–63.CrossRef Limon D, McSherry F, Herndon J, Sampson J, Fecci P, Adamson J, et al. Single fraction stereotactic radiosurgery for multiple brain metastases. Adv Radiat Oncol. 2017;2(4):555–63.CrossRef
17.
go back to reference Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.CrossRef Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.CrossRef
18.
go back to reference Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48.CrossRef Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48.CrossRef
19.
go back to reference Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.CrossRef Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.CrossRef
20.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRef Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRef
21.
go back to reference Khan FM, Gibbons JP Jr. Clinical radiation generators. The physics of radiation therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 39–57. Khan FM, Gibbons JP Jr. Clinical radiation generators. The physics of radiation therapy. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2014. p. 39–57.
22.
go back to reference Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.CrossRef Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.CrossRef
23.
go back to reference Zhao B, Jin JY, Wen N, Huang Y, Siddiqui MS, Chetty IJ, et al. Prescription to 50-75% isodose line may be optimum for linear accelerator based radiosurgery of cranial lesions. J Radiosurg SBRT. 2014;3(2):139–47.PubMedPubMedCentral Zhao B, Jin JY, Wen N, Huang Y, Siddiqui MS, Chetty IJ, et al. Prescription to 50-75% isodose line may be optimum for linear accelerator based radiosurgery of cranial lesions. J Radiosurg SBRT. 2014;3(2):139–47.PubMedPubMedCentral
24.
go back to reference Cardinale RM, Wu Q, Benedict SH, Kavanagh BD, Bump E, Mohan R. Determining the optimal block margin on the planning target volume for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1999;45(2):515–20.CrossRef Cardinale RM, Wu Q, Benedict SH, Kavanagh BD, Bump E, Mohan R. Determining the optimal block margin on the planning target volume for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1999;45(2):515–20.CrossRef
25.
go back to reference Ding C, Solberg TD, Hrycushko B, Xing L, Heinzerling J, Timmerman RD. Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: conventional vs robotic linac. Med Phys. 2013;40(5):051705.CrossRef Ding C, Solberg TD, Hrycushko B, Xing L, Heinzerling J, Timmerman RD. Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: conventional vs robotic linac. Med Phys. 2013;40(5):051705.CrossRef
Metadata
Title
Circular collimator arc versus dynamic conformal arc treatment planning for linac-based stereotactic radiosurgery of an intracranial small single lesion: a perspective of lesion asymmetry
Authors
Yongsook C. Lee
Yongbok Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1307-z

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue