Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Assessment of portal image resolution improvement using an external aluminum target and polystyrene electron filter

Authors: Jonggeun Baek, Hyungdong Kim, Byungyong Kim, Youngkee Oh, Hyunsoo Jang

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

In this study, an external 8 mm thick aluminum target was installed on the upper accessory tray mount of a medical linear accelerator head. The purpose of this study was to determine the effects of the external aluminum target beam (Al-target beam) on the portal image quality by analyzing the spatial and contrast resolutions. In addition, the image resolutions with the Al-target beams were compared with those of conventional 6 megavoltage (MV) images.

Methods

The optimized Al-target beam was calculated using Monte Carlo simulations. To validate the simulations, the percentage depth dose and lateral profiles were measured and compared with the modeled dose distributions. A PTW resolution phantom was used for imaging to assess the image resolution. The spatial resolution was quantified by determining the modulation transfer function. The contrast resolution was determined by a fine contrast difference between the 27 measurement areas. The spatial and contrast resolutions were compared with the those of conventional portal images.

Results

The measured and calculated percentage depth dose of the Al-target beam were consistent within 1.6%. The correspondence of measured and modelled profiles was evaluated by gamma analysis (3%, 3 mm) and all gamma values inside the field were less than one. The critical spatial frequencies (f50) of the images obtained with the Al-target beam and conventional imaging beam were 0.745 lp/mm and 0.451 lp/mm, respectively. The limiting spatial frequencies (f10) for the Al-target beam image and the conventional portal image were 2.39 lp/mm and 1.82 lp/mm, respectively. The Al-target beam resolved the smaller and lower contrast objects better than that of the MV photon beam.

Conclusion

The Al-target beams generated by the simple target installation method provided better spatial and contrast resolutions than those of the conventional 6 MV imaging beam.
Literature
1.
go back to reference Tsechanski A, Bielajew AF, Faermann S, Krutman Y. A thin target approach for portal imaging in medical accelerators. Phys Med Biol. 1998;43(8):2221.CrossRef Tsechanski A, Bielajew AF, Faermann S, Krutman Y. A thin target approach for portal imaging in medical accelerators. Phys Med Biol. 1998;43(8):2221.CrossRef
2.
go back to reference Orton E, Robar J. Megavoltage image contrast with low-atomic number target materials and amorphous silicon electronic portal imagers. Phys Med Biol. 2009;54(5):1275.CrossRef Orton E, Robar J. Megavoltage image contrast with low-atomic number target materials and amorphous silicon electronic portal imagers. Phys Med Biol. 2009;54(5):1275.CrossRef
3.
go back to reference Flampouri S, Evans P, Verhaegen F, Nahum A, Spezi E, Partridge M. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment. Phys Med Biol. 2002;47(18):3331.CrossRef Flampouri S, Evans P, Verhaegen F, Nahum A, Spezi E, Partridge M. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment. Phys Med Biol. 2002;47(18):3331.CrossRef
4.
go back to reference Jaffray D, Rowbottom C, Siewerdsen J, Letourneau D, Wong J, Martinez A. Calibration and targeting performance of a cone-beam computed tomography guidance system for radiation therapy. Int J Radiat Oncol Biol Phys. 2002;54(2):334–5.CrossRef Jaffray D, Rowbottom C, Siewerdsen J, Letourneau D, Wong J, Martinez A. Calibration and targeting performance of a cone-beam computed tomography guidance system for radiation therapy. Int J Radiat Oncol Biol Phys. 2002;54(2):334–5.CrossRef
5.
go back to reference Sharpe MB, Moseley DJ, Purdie TG, Islam M, Siewerdsen JH, Jaffray DA. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear acceleratora. Med Phys. 2006;33(1):136–44.CrossRef Sharpe MB, Moseley DJ, Purdie TG, Islam M, Siewerdsen JH, Jaffray DA. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear acceleratora. Med Phys. 2006;33(1):136–44.CrossRef
6.
go back to reference Oh Y-K, Baek J, Kim O-B, Kim J-H. Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys. 2014;15(2):85–99.CrossRef Oh Y-K, Baek J, Kim O-B, Kim J-H. Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys. 2014;15(2):85–99.CrossRef
7.
go back to reference Parsons D, Robar JL. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets. Med Phys. 2012;39(7):4568–78.CrossRef Parsons D, Robar JL. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets. Med Phys. 2012;39(7):4568–78.CrossRef
8.
go back to reference Tang G, Moussot C, Morf D, Seppi E, Amols H. Low-dose 2.5 MV cone-beam computed tomography with thick CsI flat-panel imager. J Appl Clin Med Phys. 2016;17(4):235–45.CrossRef Tang G, Moussot C, Morf D, Seppi E, Amols H. Low-dose 2.5 MV cone-beam computed tomography with thick CsI flat-panel imager. J Appl Clin Med Phys. 2016;17(4):235–45.CrossRef
9.
go back to reference Ali I, Ahmad S. Evaluation of the effects of sagging shifts on isocenter accuracy and image quality of cone-beam CT from kV on-board imagers. J Appl Clin Med Phys. 2009;10(3):2930.CrossRef Ali I, Ahmad S. Evaluation of the effects of sagging shifts on isocenter accuracy and image quality of cone-beam CT from kV on-board imagers. J Appl Clin Med Phys. 2009;10(3):2930.CrossRef
10.
go back to reference Kim H, Kim B, Baek J, Oh Y, Yun S, Jang H. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation. Br J Radiol. 2018;91(1084):20170376.CrossRef Kim H, Kim B, Baek J, Oh Y, Yun S, Jang H. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation. Br J Radiol. 2018;91(1084):20170376.CrossRef
11.
go back to reference Galbraith DM. Low-energy imaging with high-energy bremsstrahlung beams. Med Phys. 1989;16(5):734–46.CrossRef Galbraith DM. Low-energy imaging with high-energy bremsstrahlung beams. Med Phys. 1989;16(5):734–46.CrossRef
12.
go back to reference Baek J, Jang H, Oh Y, Kim H, Kim B, Lee H, et al. Monte Carlo simulation of the generation of 25 to 150 keV photon beams by using GEANT4. New Physics: Sae Mulli. 2016;66(11):1450–6. Baek J, Jang H, Oh Y, Kim H, Kim B, Lee H, et al. Monte Carlo simulation of the generation of 25 to 150 keV photon beams by using GEANT4. New Physics: Sae Mulli. 2016;66(11):1450–6.
13.
go back to reference Roberts DA, Hansen VN, Niven AC, Thompson MG, Seco J, Evans PM. A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol. 2008;53(22):6305–19.CrossRef Roberts DA, Hansen VN, Niven AC, Thompson MG, Seco J, Evans PM. A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol. 2008;53(22):6305–19.CrossRef
14.
go back to reference Roberts D, Hansen V, Thompson M, Poludniowski G, Niven A, Seco J, et al. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range. Med Phys. 2012;39(3):1218–26.CrossRef Roberts D, Hansen V, Thompson M, Poludniowski G, Niven A, Seco J, et al. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range. Med Phys. 2012;39(3):1218–26.CrossRef
15.
go back to reference Parsons D, Robar JL, Sawkey D. A Monte Carlo investigation of low-Z target image quality generated in a linear accelerator using Varian's VirtuaLinac. Med Phys. 2014;41(2):021719.CrossRef Parsons D, Robar JL, Sawkey D. A Monte Carlo investigation of low-Z target image quality generated in a linear accelerator using Varian's VirtuaLinac. Med Phys. 2014;41(2):021719.CrossRef
16.
go back to reference Connell T, Robar JL. Low-Z target optimization for spatial resolution improvement in megavoltage imaging. Med Phys. 2010;37(1):124–31.CrossRef Connell T, Robar JL. Low-Z target optimization for spatial resolution improvement in megavoltage imaging. Med Phys. 2010;37(1):124–31.CrossRef
17.
go back to reference Chang Z, Wu Q, Adamson J, Ren L, Bowsher J, Yan H, et al. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys. 2012;39(11):6981–7018.CrossRef Chang Z, Wu Q, Adamson J, Ren L, Bowsher J, Yan H, et al. Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys. 2012;39(11):6981–7018.CrossRef
18.
go back to reference Gete E, Duzenli C, Milette MP, Mestrovic A, Hyde D, Bergman AM, et al. A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys. 2013;40(2):021707.CrossRef Gete E, Duzenli C, Milette MP, Mestrovic A, Hyde D, Bergman AM, et al. A Monte Carlo approach to validation of FFF VMAT treatment plans for the TrueBeam linac. Med Phys. 2013;40(2):021707.CrossRef
19.
go back to reference Constantin M, Perl J, LoSasso T, Salop A, Whittum D, Narula A, et al. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011;38(7):4018–24.CrossRef Constantin M, Perl J, LoSasso T, Salop A, Whittum D, Narula A, et al. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011;38(7):4018–24.CrossRef
20.
go back to reference Coltman JW. The specification of imaging properties by response to a sine wave input. JOSA. 1954;44(6):468–9.CrossRef Coltman JW. The specification of imaging properties by response to a sine wave input. JOSA. 1954;44(6):468–9.CrossRef
21.
go back to reference Bushberg JT, Boone JM. The essential physics of medical imaging: Lippincott Williams & Wilkins; 2011. Bushberg JT, Boone JM. The essential physics of medical imaging: Lippincott Williams & Wilkins; 2011.
22.
go back to reference Ostapiak O, O’Brien P, Faddegon B. Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys. 1998;25(10):1910–8.CrossRef Ostapiak O, O’Brien P, Faddegon B. Megavoltage imaging with low Z targets: implementation and characterization of an investigational system. Med Phys. 1998;25(10):1910–8.CrossRef
23.
go back to reference Robar JL, Connell T, Huang W, Kelly RG. Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys. 2009;36(9):3955–63.CrossRef Robar JL, Connell T, Huang W, Kelly RG. Megavoltage planar and cone-beam imaging with low-Z targets: dependence of image quality improvement on beam energy and patient separation. Med Phys. 2009;36(9):3955–63.CrossRef
Metadata
Title
Assessment of portal image resolution improvement using an external aluminum target and polystyrene electron filter
Authors
Jonggeun Baek
Hyungdong Kim
Byungyong Kim
Youngkee Oh
Hyunsoo Jang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1274-4

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue