Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Research

Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer

Authors: Seung Hyuck Jeon, Changhoon Song, Eui Kyu Chie, Bohyoung Kim, Young Hoon Kim, Won Chang, Yoon Jin Lee, Joo-Hyun Chung, Jin Beom Chung, Keun-Wook Lee, Sung-Bum Kang, Jae-Sung Kim

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

To develop and compare delta-radiomics signatures from 2- (2D) and 3-dimensional (3D) features that predict treatment outcomes following preoperative chemoradiotherapy (CCRT) and surgery for locally advanced rectal cancer.

Methods

In total, 101 patients (training cohort, n = 67; validation cohort, n = 34) with locally advanced rectal adenocarcinoma between 2008 and 2015 were included. We extracted 55 features from T2-weighted magnetic resonance imaging (MRI) scans. Delta-radiomics feature was defined as the difference in radiomics feature before and after CCRT. Signatures were developed to predict local recurrence (LR), distant metastasis (DM), and disease-free survival (DFS) from 2D and 3D features. The least absolute shrinkage and selection operator regression was used to select features and build signatures. The delta-radiomics signatures and clinical factors were integrated into Cox regression analysis to determine if the signatures were independent prognostic factors.

Results

The radiomics signatures for LR, DM, and DFS were developed and validated using both 2D and 3D features. Outcomes were significantly different in the low- and high-risk patients dichotomized by optimal cutoff in both the training and validation cohorts. In multivariate analysis, the signatures were independent prognostic factors even when considering the clinical parameters. There were no significant differences in C-index from 2D vs. 3D signatures.

Conclusions

This is the first study to develop delta-radiomics signatures for rectal cancer. The signatures successfully predicted the outcomes and were independent prognostic factors. External validation is warranted to ensure their performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926–33.CrossRef Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926–33.CrossRef
2.
go back to reference Stipa F, Picchio M, Burza A, et al. Long-term outcome of local excision after preoperative chemoradiation for ypT0 rectal cancer. Dis Colon Rectum. 2014;57:1245–52.CrossRef Stipa F, Picchio M, Burza A, et al. Long-term outcome of local excision after preoperative chemoradiation for ypT0 rectal cancer. Dis Colon Rectum. 2014;57:1245–52.CrossRef
3.
go back to reference Yu CS, Yun HR, Shin EJ, et al. Local excision after neoadjuvant chemoradiation therapy in advanced rectal cancer: a national multicenter analysis. Am J Surg. 2013;206:482–7.CrossRef Yu CS, Yun HR, Shin EJ, et al. Local excision after neoadjuvant chemoradiation therapy in advanced rectal cancer: a national multicenter analysis. Am J Surg. 2013;206:482–7.CrossRef
4.
go back to reference Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–7.PubMedPubMedCentral Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–7.PubMedPubMedCentral
5.
go back to reference Renehan AG, Malcomson L, Emsley R, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2016;17:174–83.CrossRef Renehan AG, Malcomson L, Emsley R, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2016;17:174–83.CrossRef
6.
go back to reference Gérard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44.CrossRef Gérard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44.CrossRef
7.
go back to reference Habr-Gama A, Perez RO, São Julião GP, et al. Consolidation chemotherapy during neoadjuvant chemoradiation (CRT) for distal rectal cancer leads to sustained decrease in tumor metabolism when compared to standard CRT regimen. Radiat Oncol. 2016;11:24.CrossRef Habr-Gama A, Perez RO, São Julião GP, et al. Consolidation chemotherapy during neoadjuvant chemoradiation (CRT) for distal rectal cancer leads to sustained decrease in tumor metabolism when compared to standard CRT regimen. Radiat Oncol. 2016;11:24.CrossRef
8.
go back to reference Breugom AJ, Swets M, Bosset JF, et al. Adjuvant chemotherapy after preoperative (chemo) radiotherapy and surgery for patients with rectal cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200–7.CrossRef Breugom AJ, Swets M, Bosset JF, et al. Adjuvant chemotherapy after preoperative (chemo) radiotherapy and surgery for patients with rectal cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200–7.CrossRef
9.
go back to reference Sun W, Jiang M, Dang J, et al. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol. 2018;13(1):197.CrossRef Sun W, Jiang M, Dang J, et al. Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis. Radiat Oncol. 2018;13(1):197.CrossRef
10.
go back to reference Li Q, Bai H, Chen Y, et al. A fully-automatic multiparametric Radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma Multiforme. Sci Rep. 2017;7:14331.CrossRef Li Q, Bai H, Chen Y, et al. A fully-automatic multiparametric Radiomics model: towards reproducible and prognostic imaging signature for prediction of overall survival in glioblastoma Multiforme. Sci Rep. 2017;7:14331.CrossRef
11.
go back to reference Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259–69.CrossRef Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259–69.CrossRef
12.
go back to reference Nie K, Shi L, Chen Q, et al. Rectal Cancer: assessment of neoadjuvant Chemoradiation outcome based on Radiomics of multiparametric MRI. Clin Cancer Res. 2016;22:5256–64.CrossRef Nie K, Shi L, Chen Q, et al. Rectal Cancer: assessment of neoadjuvant Chemoradiation outcome based on Radiomics of multiparametric MRI. Clin Cancer Res. 2016;22:5256–64.CrossRef
13.
go back to reference Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant Chemoradiotherapy in locally advanced rectal Cancer. Clin Cancer Res. 2017;23:7253–62.CrossRef Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant Chemoradiotherapy in locally advanced rectal Cancer. Clin Cancer Res. 2017;23:7253–62.CrossRef
16.
go back to reference Cusumano D, Dinapoli N, Boldrini L, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2018;123:286–95.CrossRef Cusumano D, Dinapoli N, Boldrini L, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2018;123:286–95.CrossRef
17.
go back to reference Dinapoli N, Barbaro B, Gatta R, et al. Magnetic resonance, vendor-independent, intensity histogram analysis predicting pathologic complete response after Radiochemotherapy of rectal Cancer. Int J Radiat Oncol Biol Phys. 2018;102:765–74.CrossRef Dinapoli N, Barbaro B, Gatta R, et al. Magnetic resonance, vendor-independent, intensity histogram analysis predicting pathologic complete response after Radiochemotherapy of rectal Cancer. Int J Radiat Oncol Biol Phys. 2018;102:765–74.CrossRef
18.
go back to reference Giannini V, Mazzetti S, Bertotto I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features [published online ahead of print January 13, 2019]. Eur J Nucl Med Mol Imaging. 2019. https://doi.org/10.1007/s00259-018-4250-6 [Epub ahead of print]. Giannini V, Mazzetti S, Bertotto I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features [published online ahead of print January 13, 2019]. Eur J Nucl Med Mol Imaging. 2019. https://​doi.​org/​10.​1007/​s00259-018-4250-6 [Epub ahead of print].
19.
go back to reference Fave X, Zhang L, Yang J, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.CrossRef Fave X, Zhang L, Yang J, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.CrossRef
20.
go back to reference Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261:165–71.CrossRef Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261:165–71.CrossRef
21.
go back to reference Boldrini L, Cusumano D, Chiloiro G, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124:145–53.CrossRef Boldrini L, Cusumano D, Chiloiro G, et al. Delta radiomics for rectal cancer response prediction with hybrid 0.35 T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach. Radiol Med. 2019;124:145–53.CrossRef
22.
go back to reference Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22:81–91.CrossRef Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging. 2004;22:81–91.CrossRef
23.
go back to reference Johnston E, Punwani S. Can we improve the reproducibility of quantitative multiparametric prostate MR imaging metrics? Radiology. 2016;281:652–3.CrossRef Johnston E, Punwani S. Can we improve the reproducibility of quantitative multiparametric prostate MR imaging metrics? Radiology. 2016;281:652–3.CrossRef
25.
go back to reference Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44.CrossRef Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–44.CrossRef
26.
go back to reference Agarwal A, Chang GJ, Hu CY, et al. Quantified pathologic response assessed as residual tumor burden is a predictor of recurrence-free survival in patients with rectal cancer who undergo resection after neoadjuvant chemoradiotherapy. Cancer. 2013;119:4231–41.CrossRef Agarwal A, Chang GJ, Hu CY, et al. Quantified pathologic response assessed as residual tumor burden is a predictor of recurrence-free survival in patients with rectal cancer who undergo resection after neoadjuvant chemoradiotherapy. Cancer. 2013;119:4231–41.CrossRef
27.
go back to reference Bhoday J, Smith F, Siddiqui MR, et al. Magnetic resonance tumor regression grade and residual mucosal abnormality as predictors for pathological complete response in rectal Cancer Postneoadjuvant Chemoradiotherapy. Dis Colon Rectum. 2016;59:925–33.CrossRef Bhoday J, Smith F, Siddiqui MR, et al. Magnetic resonance tumor regression grade and residual mucosal abnormality as predictors for pathological complete response in rectal Cancer Postneoadjuvant Chemoradiotherapy. Dis Colon Rectum. 2016;59:925–33.CrossRef
28.
go back to reference Patel UB, Brown G, Rutten H, et al. Comparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancer. Ann Surg Oncol. 2012;19:2842–52.CrossRef Patel UB, Brown G, Rutten H, et al. Comparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancer. Ann Surg Oncol. 2012;19:2842–52.CrossRef
29.
go back to reference Song C, Chung JH, Kang SB, et al. Impact of tumor regression grade as a major prognostic factor in locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a proposal for a modified staging system. Cancers (Basel). 2018;10:e319. Song C, Chung JH, Kang SB, et al. Impact of tumor regression grade as a major prognostic factor in locally advanced rectal cancer after neoadjuvant chemoradiotherapy: a proposal for a modified staging system. Cancers (Basel). 2018;10:e319.
30.
go back to reference Maas M, Nelemans PJ, Valentini V, et al. Adjuvant chemotherapy in rectal cancer: defining subgroups who may benefit after neoadjuvant chemoradiation and resection: a pooled analysis of 3,313 patients. Int J Cancer. 2015;137:212–20.CrossRef Maas M, Nelemans PJ, Valentini V, et al. Adjuvant chemotherapy in rectal cancer: defining subgroups who may benefit after neoadjuvant chemoradiation and resection: a pooled analysis of 3,313 patients. Int J Cancer. 2015;137:212–20.CrossRef
31.
go back to reference van Erning FN, Rutten HJ, van den Berg HA, et al. Effect of adjuvant chemotherapy on recurrence-free survival varies by neo-adjuvant treatment in patients with stage III rectal cancer. Eur J Surg Oncol. 2015;41:1630–5.CrossRef van Erning FN, Rutten HJ, van den Berg HA, et al. Effect of adjuvant chemotherapy on recurrence-free survival varies by neo-adjuvant treatment in patients with stage III rectal cancer. Eur J Surg Oncol. 2015;41:1630–5.CrossRef
32.
go back to reference Chee CG, Kim YH, Lee KH, et al. CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS One. 2017;12:e0182883.CrossRef Chee CG, Kim YH, Lee KH, et al. CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: a potential imaging biomarker for treatment response and prognosis. PLoS One. 2017;12:e0182883.CrossRef
33.
go back to reference Jalil O, Afaq A, Ganeshan B, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Color Dis. 2017;19:349–62.CrossRef Jalil O, Afaq A, Ganeshan B, et al. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy. Color Dis. 2017;19:349–62.CrossRef
34.
go back to reference De Cecco CN, Ciolina M, Caruso D, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY). 2016;41:1728–35.CrossRef De Cecco CN, Ciolina M, Caruso D, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY). 2016;41:1728–35.CrossRef
35.
go back to reference Liu L, Liu Y, Xu L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging. 2017;45:1798–808.CrossRef Liu L, Liu Y, Xu L, et al. Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging. 2017;45:1798–808.CrossRef
36.
go back to reference Birlik B, Obuz F, Elibol FD, et al. Diffusion-weighted MRI and MR- volumetry--in the evaluation of tumor response after preoperative chemoradiotherapy in patients with locally advanced rectal cancer. Magn Reson Imaging. 2015;33:201–12.CrossRef Birlik B, Obuz F, Elibol FD, et al. Diffusion-weighted MRI and MR- volumetry--in the evaluation of tumor response after preoperative chemoradiotherapy in patients with locally advanced rectal cancer. Magn Reson Imaging. 2015;33:201–12.CrossRef
37.
go back to reference Sun Y, Tong T, Cai S, et al. Apparent diffusion coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer. PLoS One. 2014;9:e109371.CrossRef Sun Y, Tong T, Cai S, et al. Apparent diffusion coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer. PLoS One. 2014;9:e109371.CrossRef
38.
go back to reference Lambregts DM, Rao SX, Sassen S, et al. MRI and diffusion-weighted MRI Volumetry for identification of complete tumor responders after preoperative Chemoradiotherapy in patients with rectal Cancer: a bi-institutional validation study. Ann Surg. 2015;262:1034–9.CrossRef Lambregts DM, Rao SX, Sassen S, et al. MRI and diffusion-weighted MRI Volumetry for identification of complete tumor responders after preoperative Chemoradiotherapy in patients with rectal Cancer: a bi-institutional validation study. Ann Surg. 2015;262:1034–9.CrossRef
Metadata
Title
Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer
Authors
Seung Hyuck Jeon
Changhoon Song
Eui Kyu Chie
Bohyoung Kim
Young Hoon Kim
Won Chang
Yoon Jin Lee
Joo-Hyun Chung
Jin Beom Chung
Keun-Wook Lee
Sung-Bum Kang
Jae-Sung Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1246-8

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue