Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Validation of new transmission detector transmission factors for online dosimetry: an experimental study

Authors: So-Yeon Park, Jong Min Park, Jung-in Kim, Sungyoung Lee, Chang Heon Choi

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

The demand for dose verification during treatment has risen with the increasing use of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) in modern radiation therapy. This study aims to validate the transmission factors of a new transmission detector, the Dolphin online monitoring system (IBA Dosimetry, Schwarzenbruck, Germany), for clinical use.

Methods

The transmission factors of the Dolphin detector were evaluated using 6 MV, 6 flattening filter free (FFF), 10 MV, and 10 FFF clinical beams from a TrueBeam STx linear accelerator system. Two-dimensional (2D) dose distributions were measured through portal dosimetry with and without Dolphin to derive the transmission factors. The measurements were performed using 10 IMRT and 10 VMAT treatment plans. The transmission factors were calculated using a non-negative least squares problem solver for the 2D dose matrix. Normalized plans were generated using the derived transmission factors. Patient-specific quality assurance with normalized plans was performed using portal dosimetry and an ArcCheck detector to verify the transmission factors. The gamma passing rates were calculated for the 2%/2 mm and 1%/1 mm criteria.

Results

The transmission factors for the 6 MV, 6 FFF, 10 MV, and 10 FFF beams, were 0.878, 0.824, 0.913, and 0.883, respectively. The average dose difference between the original plan without Dolphin and the normalized plan with Dolphin was less than 1.8% for all measurements. The mean passing rates of the gamma evaluation were 98.1 ± 2.1 and 82.9 ± 12.6 for the 2%/2 mm and 1%/1 mm criteria, respectively, for portal dosimetry of the original plan. In the case of the portal dosimetry of the normalized plan, the mean passing rates of the gamma evaluation were 97.2 ± 2.8 and 79.1 ± 14.8 for the 2%/2 mm and 1%/1 mm criteria, respectively.

Conclusions

The Dolphin detector can be used for online dosimetry when valid transmission factors are applied to the clinical plan.
Literature
1.
go back to reference Georg D, Thwaites D. Medical physics in radiation oncology: new challenges, needs and roles. Radiother Oncol. 2017;125:375–8.CrossRefPubMed Georg D, Thwaites D. Medical physics in radiation oncology: new challenges, needs and roles. Radiother Oncol. 2017;125:375–8.CrossRefPubMed
2.
go back to reference Choi CH, Park S-Y, Kim J-i, Kim JH, Kim K, Carlson J, et al. Quality of tri-co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2016;90:20160652.CrossRefPubMedPubMedCentral Choi CH, Park S-Y, Kim J-i, Kim JH, Kim K, Carlson J, et al. Quality of tri-co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR. Br J Radiol. 2016;90:20160652.CrossRefPubMedPubMedCentral
3.
go back to reference Kim J-i, Choi CH, Wu H-G, Kim JH, Kim K, Park JM. Correlation analysis between 2D and quasi-3D gamma evaluations for both intensity-modulated radiation therapy and volumetric modulated arc therapy. Oncotarget. 2017;8(3):5449–59.PubMed Kim J-i, Choi CH, Wu H-G, Kim JH, Kim K, Park JM. Correlation analysis between 2D and quasi-3D gamma evaluations for both intensity-modulated radiation therapy and volumetric modulated arc therapy. Oncotarget. 2017;8(3):5449–59.PubMed
4.
go back to reference Vieillevigne L, Molinier J, Brun T, Ferrand R. Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Phys Med. 2015;31:720–5.CrossRefPubMed Vieillevigne L, Molinier J, Brun T, Ferrand R. Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Phys Med. 2015;31:720–5.CrossRefPubMed
5.
go back to reference Stevens S, Dvorak P, Spevacek V, Pilarova K, Bray-Parry M, Gesner J, et al. An assessment of a 3D EPID-based dosimetry system using conventional two-and three-dimensional detectors for VMAT. Phys Med. 2018;45:25–34.CrossRefPubMed Stevens S, Dvorak P, Spevacek V, Pilarova K, Bray-Parry M, Gesner J, et al. An assessment of a 3D EPID-based dosimetry system using conventional two-and three-dimensional detectors for VMAT. Phys Med. 2018;45:25–34.CrossRefPubMed
6.
go back to reference Liang B, Liu B, Zhou F, F-f Y, Wu Q. Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors. Radiat Oncol. 2016;11:146.CrossRefPubMedPubMedCentral Liang B, Liu B, Zhou F, F-f Y, Wu Q. Comparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors. Radiat Oncol. 2016;11:146.CrossRefPubMedPubMedCentral
7.
go back to reference Park S-Y, Park JM, Choi CH, Chun M, Han JH, Cho JD, et al. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA. J Radiat Prot Res. 2017;42:9–15.CrossRef Park S-Y, Park JM, Choi CH, Chun M, Han JH, Cho JD, et al. Optimal density assignment to 2D diode array detector for different dose calculation algorithms in patient specific VMAT QA. J Radiat Prot Res. 2017;42:9–15.CrossRef
8.
go back to reference Crowe S, Kairn T, Middlebrook N, Sutherland B, Hill B, Kenny J, et al. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results. Phys Med Biol. 2015;60:2587.CrossRefPubMed Crowe S, Kairn T, Middlebrook N, Sutherland B, Hill B, Kenny J, et al. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results. Phys Med Biol. 2015;60:2587.CrossRefPubMed
9.
go back to reference Nakaguchi Y, Ono T, Maruyama M, Shimohigashi Y, Kai Y. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector. J Appl Clin Med Phys. 2017;18:69–75.CrossRefPubMedPubMedCentral Nakaguchi Y, Ono T, Maruyama M, Shimohigashi Y, Kai Y. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector. J Appl Clin Med Phys. 2017;18:69–75.CrossRefPubMedPubMedCentral
10.
go back to reference Kim J-i, Choi CH, Park S-Y, An H, Wu H-G, Park JM. Gamma evaluation with portal Dosimetry for volumetric modulated arc therapy and intensity-modulated radiation therapy. Prog Med Phys. 2017;28:61–6.CrossRef Kim J-i, Choi CH, Park S-Y, An H, Wu H-G, Park JM. Gamma evaluation with portal Dosimetry for volumetric modulated arc therapy and intensity-modulated radiation therapy. Prog Med Phys. 2017;28:61–6.CrossRef
11.
go back to reference Cheung JP, Perez-Andujar A, Morin O. Characterization of the effect of a new commercial transmission detector on radiation therapy beams. Pract Radiat Oncol. 2017;7:e559–e67.CrossRefPubMed Cheung JP, Perez-Andujar A, Morin O. Characterization of the effect of a new commercial transmission detector on radiation therapy beams. Pract Radiat Oncol. 2017;7:e559–e67.CrossRefPubMed
12.
go back to reference Ricketts K, Navarro C, Lane K, Blowfield C, Cotten G, Tomala D, et al. Clinical experience and evaluation of patient treatment verification with a transit dosimeter. Int J Radiat Oncol Biol Phys. 2016;95:1513–9.CrossRefPubMed Ricketts K, Navarro C, Lane K, Blowfield C, Cotten G, Tomala D, et al. Clinical experience and evaluation of patient treatment verification with a transit dosimeter. Int J Radiat Oncol Biol Phys. 2016;95:1513–9.CrossRefPubMed
13.
go back to reference van der Bijl E, van Oers RF, Olaciregui-Ruiz I, Mans A. Comparison of gamma-and DVH-based in vivo dosimetric plan evaluation for pelvic VMAT treatments. Radiother Oncol. 2017;125:405–10.CrossRefPubMed van der Bijl E, van Oers RF, Olaciregui-Ruiz I, Mans A. Comparison of gamma-and DVH-based in vivo dosimetric plan evaluation for pelvic VMAT treatments. Radiother Oncol. 2017;125:405–10.CrossRefPubMed
14.
go back to reference Kamerling CP, Fast MF, Ziegenhein P, Menten MJ, Nill S, Oelfke U. Online dose reconstruction for tracked volumetric arc therapy: real-time implementation and offline quality assurance for prostate SBRT. Med Phys. 2017;44(11):5997–6007.CrossRefPubMed Kamerling CP, Fast MF, Ziegenhein P, Menten MJ, Nill S, Oelfke U. Online dose reconstruction for tracked volumetric arc therapy: real-time implementation and offline quality assurance for prostate SBRT. Med Phys. 2017;44(11):5997–6007.CrossRefPubMed
15.
go back to reference Thoelking J, Fleckenstein J, Sekar Y, Boggula R, Lohr F, Wenz F, et al. Patient-specific online dose verification based on transmission detector measurements. Radiother Oncol. 2016;119:351–6.CrossRefPubMed Thoelking J, Fleckenstein J, Sekar Y, Boggula R, Lohr F, Wenz F, et al. Patient-specific online dose verification based on transmission detector measurements. Radiother Oncol. 2016;119:351–6.CrossRefPubMed
16.
go back to reference Pasler M, Michel K, Marrazzo L, Obenland M, Pallotta S, Björnsgard M, et al. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring. Phys Med Biol. 2017;62:7440.CrossRefPubMed Pasler M, Michel K, Marrazzo L, Obenland M, Pallotta S, Björnsgard M, et al. Error detection capability of a novel transmission detector: a validation study for online VMAT monitoring. Phys Med Biol. 2017;62:7440.CrossRefPubMed
17.
go back to reference Rankine LJ, Mein S, Cai B, Curcuru A, Juang T, Miles D, et al. Three-dimensional dosimetric validation of a magnetic resonance guided intensity modulated radiation therapy system. Int J Radiat Oncol Biol Phys. 2017;97:1095–104.CrossRefPubMed Rankine LJ, Mein S, Cai B, Curcuru A, Juang T, Miles D, et al. Three-dimensional dosimetric validation of a magnetic resonance guided intensity modulated radiation therapy system. Int J Radiat Oncol Biol Phys. 2017;97:1095–104.CrossRefPubMed
18.
go back to reference McCowan P, Asuni G, van Beek T, van Uytven E, Kujanpaa K, McCurdy B. A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID. Phys Med Biol. 2017;62:1600.CrossRefPubMed McCowan P, Asuni G, van Beek T, van Uytven E, Kujanpaa K, McCurdy B. A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID. Phys Med Biol. 2017;62:1600.CrossRefPubMed
19.
go back to reference Miori G, Martignano A, Menegotti L, Valentini A. Evaluation of an integral quality monitor device for monitoring real-time delivery. Phys Med. 2016;32:42–3.CrossRef Miori G, Martignano A, Menegotti L, Valentini A. Evaluation of an integral quality monitor device for monitoring real-time delivery. Phys Med. 2016;32:42–3.CrossRef
20.
go back to reference Gonod M, Giordan V, ScandiDos, Aubignac L. 6. ScandiDos’s discover system evaluation. Phys Med. 2017;44(S1):30. Gonod M, Giordan V, ScandiDos, Aubignac L. 6. ScandiDos’s discover system evaluation. Phys Med. 2017;44(S1):30.
21.
go back to reference Valve A, Keyriläinen J, Kulmala J. Compass model-based quality assurance for stereotactic VMAT treatment plans. Phys Med. 2017;44:42–50.CrossRefPubMed Valve A, Keyriläinen J, Kulmala J. Compass model-based quality assurance for stereotactic VMAT treatment plans. Phys Med. 2017;44:42–50.CrossRefPubMed
22.
go back to reference Tomsej M, Monseux A, Baltieri V, Leclercq C, Sottiaux A. Assessment of portal dosimetry accuracy as a QA tool for VMAT clinical treatment plans using dolphin/compass tools. Phys Med. 2016;32:265.CrossRef Tomsej M, Monseux A, Baltieri V, Leclercq C, Sottiaux A. Assessment of portal dosimetry accuracy as a QA tool for VMAT clinical treatment plans using dolphin/compass tools. Phys Med. 2016;32:265.CrossRef
23.
go back to reference Miri N, Keller P, Zwan BJ, Greer P. EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams. J Appl Clin Med Phys. 2016;17:292–304.CrossRefPubMedPubMedCentral Miri N, Keller P, Zwan BJ, Greer P. EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams. J Appl Clin Med Phys. 2016;17:292–304.CrossRefPubMedPubMedCentral
24.
go back to reference Yao W, Farr JB. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields. J Appl Clin Med Phys. 2015;16:65–77.CrossRefPubMedPubMedCentral Yao W, Farr JB. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields. J Appl Clin Med Phys. 2015;16:65–77.CrossRefPubMedPubMedCentral
25.
go back to reference Middlebrook ND, Sutherland B, Kairn T. Optimization of the dosimetric leaf gap for use in planning VMAT treatments of spine SABR cases. J Appl Clin Med Phys. 2017;18:133–9.CrossRefPubMedPubMedCentral Middlebrook ND, Sutherland B, Kairn T. Optimization of the dosimetric leaf gap for use in planning VMAT treatments of spine SABR cases. J Appl Clin Med Phys. 2017;18:133–9.CrossRefPubMedPubMedCentral
26.
go back to reference Fuangrod T, Rowshanfarzad P, Greer PB, Middleton RH. A cine-EPID based method for jaw detection and quality assurance for tracking jaw in IMRT/VMAT treatments. Phys Med. 2015;31:16–24.CrossRefPubMed Fuangrod T, Rowshanfarzad P, Greer PB, Middleton RH. A cine-EPID based method for jaw detection and quality assurance for tracking jaw in IMRT/VMAT treatments. Phys Med. 2015;31:16–24.CrossRefPubMed
27.
go back to reference Ding L, Deán-Ben XL, Lutzweiler C, Razansky D, Ntziachristos V. Efficient non-negative constrained model-based inversion in optoacoustic tomography. Phys Med Biol. 2015;60:6733.CrossRefPubMed Ding L, Deán-Ben XL, Lutzweiler C, Razansky D, Ntziachristos V. Efficient non-negative constrained model-based inversion in optoacoustic tomography. Phys Med Biol. 2015;60:6733.CrossRefPubMed
28.
go back to reference Oh S, Lewis B, Watson A, Kim S, Kim T. The effect of beam interruption during FFF-VMAT plans for SBRT. Australas Phys Eng Sci Med. 2017;40:931–8.CrossRefPubMed Oh S, Lewis B, Watson A, Kim S, Kim T. The effect of beam interruption during FFF-VMAT plans for SBRT. Australas Phys Eng Sci Med. 2017;40:931–8.CrossRefPubMed
29.
go back to reference Mullins J, DeBlois F, Syme A. Experimental characterization of the dosimetric leaf gap. Biomed Phys Eng Express. 2016;2:065013.CrossRef Mullins J, DeBlois F, Syme A. Experimental characterization of the dosimetric leaf gap. Biomed Phys Eng Express. 2016;2:065013.CrossRef
Metadata
Title
Validation of new transmission detector transmission factors for online dosimetry: an experimental study
Authors
So-Yeon Park
Jong Min Park
Jung-in Kim
Sungyoung Lee
Chang Heon Choi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1106-y

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue