Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Collimator scatter factor: Monte Carlo and in-air measurements approaches

Authors: A. Fogliata, A. Stravato, G. Reggiori, S. Tomatis, J. Würfel, M. Scorsetti, L. Cozzi

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Linac output as a function of field sizes has a phantom and a head scatter component. This last term can be measured in-air with appropriate build-up ensuring a complete electron equilibrium and the absence of the contaminant electrons. Equilibrium conditions could be achieved using a build-up cap or a mini-phantom. Monte Carlo simulations in a virtual phantom mimicking a mini-phantom were analysed with the aim of better understanding the setup conditions for measuring the collimator scatter factor that is the head scatter component of the linac output factors.

Methods

Beams of 6 and 15 MV from a TrueBeam, with size from 4 × 4 to 40 × 40 cm2 were simulated in cylindrical acrylic phantoms 20 cm long, of different diameters, from 0.5 to 4 cm, with the cylinder axis coincident with the beam central axis. The PRIMO package, based on PENELOPE Monte Carlo code, was used. The phase-space files for a Varian TrueBeam linac, provided by the linac vendor, were used for the linac head simulation. Depth dose curves were analysed, and collimator scatter factors estimated at different depth in the different phantom conditions.
Additionally, in-air measurements using acyrilic and brass build-up caps, as well as acrylic mini-phantom were acquired for 6 and 18 MV beams from a Varian Clinac DHX.

Results

The depth dose curves along the cylinders were compared, showing, in each phantom, very similar curves for all analysed field sizes, proving the correctness in estimating the collimator scatter factor in the mini-phantom, provided to position the detector to a sufficient depth to exclude electron contamination. The results were confirmed by the measurements, where the acrylic build-up cap showed to be inadequate to properly estimate the collimator scatter factors, while the mini-phantom and the brass caps gave reasonable measurements.

Conclusion

A better understanding of the beam characteristics inside a virtual mini-phantom through the analysis of depth dose curves, showed the critical points of using the acrylic build-up cap, and suggested the use of the mini-phantom for the collimator scatter factor measurements in the medium-large field size range.
Literature
1.
go back to reference Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, Nyström H, Lassen S. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51:5785–807.CrossRefPubMed Knöös T, Wieslander E, Cozzi L, Brink C, Fogliata A, Albers D, Nyström H, Lassen S. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51:5785–807.CrossRefPubMed
2.
go back to reference Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms for three generations in lung SBRT: comparison with full Monte Carlo-based dose distribution. J Appl Clin Med Phys. 2014;15:4–18.CrossRefPubMedCentral Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms for three generations in lung SBRT: comparison with full Monte Carlo-based dose distribution. J Appl Clin Med Phys. 2014;15:4–18.CrossRefPubMedCentral
3.
go back to reference van Gasteren JJM, Heukelom S, van Kleffens HJ, van der Laarse R, Venselaar JLM, Wesermann CF. The determination of phantom and collimator scatter components of the output of megavoltage photon beams: measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom. Radiother Oncol. 1991;20:250–7.CrossRefPubMed van Gasteren JJM, Heukelom S, van Kleffens HJ, van der Laarse R, Venselaar JLM, Wesermann CF. The determination of phantom and collimator scatter components of the output of megavoltage photon beams: measurement of the collimator scatter part with a beam-coaxial narrow cylindrical phantom. Radiother Oncol. 1991;20:250–7.CrossRefPubMed
4.
go back to reference Tatcher M, Bjärngard. Head-scatter factors in rectangular photon fields. Med Phys. 1993;20:205–6.CrossRefPubMed Tatcher M, Bjärngard. Head-scatter factors in rectangular photon fields. Med Phys. 1993;20:205–6.CrossRefPubMed
5.
go back to reference Dutreix A, Bjärngard BE, Bridier A, Mijnheer B, Shaw JE, Svensson H. Booklet no. 3: monitor unit calculation for high energy photon beams. Brussels: ESTRO; 1997. Dutreix A, Bjärngard BE, Bridier A, Mijnheer B, Shaw JE, Svensson H. Booklet no. 3: monitor unit calculation for high energy photon beams. Brussels: ESTRO; 1997.
6.
go back to reference Karlsson M, Ahnesjö A, Georg D, Nyholm T, Olofsson J. Booklet no. 10: independent dose calculations: concepts and models. Brussels: ESTRO; 2010. Karlsson M, Ahnesjö A, Georg D, Nyholm T, Olofsson J. Booklet no. 10: independent dose calculations: concepts and models. Brussels: ESTRO; 2010.
7.
go back to reference Li XA, Soubra M, Szanto J, Gerig H. Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. Med Phys. 1995;22(7):1167–70.CrossRefPubMed Li XA, Soubra M, Szanto J, Gerig H. Lateral electron equilibrium and electron contamination in measurements of head-scatter factors using miniphantoms and brass caps. Med Phys. 1995;22(7):1167–70.CrossRefPubMed
8.
go back to reference Weber L, Nilsson P, Ahnesjö A. Build-up cap materials for measurement of photon head-scatter factors. Phys Med Biol. 1997;42:1875–86.CrossRefPubMed Weber L, Nilsson P, Ahnesjö A. Build-up cap materials for measurement of photon head-scatter factors. Phys Med Biol. 1997;42:1875–86.CrossRefPubMed
9.
go back to reference Zhu TC, Ahnesjö A, Lam KL, Li XA, Ma CMC, Palta JR, Sharpe MB, Thomadsen B, Tailor RC. Report of AAPM therapy physics committee task group 74: in-air output ratio, Sc, for megavoltage photon beams. Med Phys. 2009;36(11):5261–91.CrossRefPubMed Zhu TC, Ahnesjö A, Lam KL, Li XA, Ma CMC, Palta JR, Sharpe MB, Thomadsen B, Tailor RC. Report of AAPM therapy physics committee task group 74: in-air output ratio, Sc, for megavoltage photon beams. Med Phys. 2009;36(11):5261–91.CrossRefPubMed
10.
go back to reference Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013;189:881–6.CrossRefPubMed Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013;189:881–6.CrossRefPubMed
11.
go back to reference Baró J, Sempau J, Fernández-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Meth B. 1995;100:31–46.CrossRef Baró J, Sempau J, Fernández-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Meth B. 1995;100:31–46.CrossRef
12.
go back to reference Sempau J, Acosta E, Baró J, Fernández-Varea JM, Salvat F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Meth B. 1997;132:377–90.CrossRef Sempau J, Acosta E, Baró J, Fernández-Varea JM, Salvat F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Meth B. 1997;132:377–90.CrossRef
13.
go back to reference Sempau J, Badal A, Brualla LA. PENELOPE-based system for the automated Monte Carlo simulation for clinacs and voxelized geometries – application to far-from-axis fields. Med Phys. 2011;38:5887–95.CrossRefPubMed Sempau J, Badal A, Brualla LA. PENELOPE-based system for the automated Monte Carlo simulation for clinacs and voxelized geometries – application to far-from-axis fields. Med Phys. 2011;38:5887–95.CrossRefPubMed
14.
go back to reference Sempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000;45:2263–91.CrossRefPubMed Sempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000;45:2263–91.CrossRefPubMed
15.
go back to reference Constantin M, Perl J, LoSasso T, Salop A, Whittum D, Narula A, Svatos M, Keall PJ. Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011;38(7):4018–24.CrossRefPubMed Constantin M, Perl J, LoSasso T, Salop A, Whittum D, Narula A, Svatos M, Keall PJ. Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations. Med Phys. 2011;38(7):4018–24.CrossRefPubMed
16.
go back to reference Zavgorodni S, Alhakeem E, Townson R. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. Phys Med Biol. 2014;59:911–24.CrossRefPubMed Zavgorodni S, Alhakeem E, Townson R. Monitor backscatter factors for the Varian 21EX and TrueBeam linear accelerators: measurements and Monte Carlo modelling. Phys Med Biol. 2014;59:911–24.CrossRefPubMed
17.
go back to reference Fippel M, Nüsslin F. Smoothing Monte Carlo calculated dose distributions by iterative reduction of noise. Phys Med Biol. 2003;48(10):1289–304.CrossRefPubMed Fippel M, Nüsslin F. Smoothing Monte Carlo calculated dose distributions by iterative reduction of noise. Phys Med Biol. 2003;48(10):1289–304.CrossRefPubMed
18.
go back to reference Jursinic PA, Thomadsen BR. Measurements of head-scatter factors with cylindrical build-up caps and columnar miniphantoms. Med Phys. 1999;26(4):512–7.CrossRefPubMed Jursinic PA, Thomadsen BR. Measurements of head-scatter factors with cylindrical build-up caps and columnar miniphantoms. Med Phys. 1999;26(4):512–7.CrossRefPubMed
19.
go back to reference Venselaar J, Heukelom S, Jager N, Mijnheer B, van der Laarse R, van Gasteren H, van Kleffens H, Westermann C. Effect of electron contamination on scatter correction factors for photon beam dosimetry. Med Phys. 1999;26(10):2099–106.CrossRefPubMed Venselaar J, Heukelom S, Jager N, Mijnheer B, van der Laarse R, van Gasteren H, van Kleffens H, Westermann C. Effect of electron contamination on scatter correction factors for photon beam dosimetry. Med Phys. 1999;26(10):2099–106.CrossRefPubMed
20.
go back to reference Frye DMD, Paliwal BR, Thomadsen BR, Jursinic P. Intercomparison of normalized head-scatter factor measurement techniques. Med Phys. 1995;22(2):249–53.CrossRefPubMed Frye DMD, Paliwal BR, Thomadsen BR, Jursinic P. Intercomparison of normalized head-scatter factor measurement techniques. Med Phys. 1995;22(2):249–53.CrossRefPubMed
Metadata
Title
Collimator scatter factor: Monte Carlo and in-air measurements approaches
Authors
A. Fogliata
A. Stravato
G. Reggiori
S. Tomatis
J. Würfel
M. Scorsetti
L. Cozzi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1070-6

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue