Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Monte Carlo verification of radiotherapy treatments with CloudMC

Authors: Hector Miras, Rubén Jiménez, Álvaro Perales, José Antonio Terrón, Alejandro Bertolet, Antonio Ortiz, José Macías

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance.

Methods

CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes.

Results

Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3–6 € when uncertainty requirements are relaxed to 4%.

Conclusions

Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.
Literature
1.
go back to reference Lovelock DM, Chui CS, Mohan R. A Monte Carlo model of photon beams used in radiation therapy. Med Phys. 1995;22(9):1387–94.CrossRefPubMed Lovelock DM, Chui CS, Mohan R. A Monte Carlo model of photon beams used in radiation therapy. Med Phys. 1995;22(9):1387–94.CrossRefPubMed
2.
go back to reference Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, et al. Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed
3.
go back to reference Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27(3):485–98.CrossRefPubMed Kawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000;27(3):485–98.CrossRefPubMed
5.
go back to reference Baró J, Sempau J, Fernández-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 1995;100(1):31–46.CrossRef Baró J, Sempau J, Fernández-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At. 1995;100(1):31–46.CrossRef
6.
go back to reference Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2003;506(3):250–303.CrossRef Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2003;506(3):250–303.CrossRef
7.
go back to reference Sempau J, Badal A, Brualla LA. PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys. 2011;38(11):5887–95.CrossRefPubMed Sempau J, Badal A, Brualla LA. PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys. 2011;38(11):5887–95.CrossRefPubMed
8.
go back to reference Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013;189(10):881–6.CrossRefPubMed Rodriguez M, Sempau J, Brualla L. PRIMO: a graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol. 2013;189(10):881–6.CrossRefPubMed
12.
go back to reference Hissoiny S, J E Raaijmakers A, Ozell B, Després P, W Raaymakers B. Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol. 2011;56:5119–29.CrossRefPubMed Hissoiny S, J E Raaijmakers A, Ozell B, Després P, W Raaymakers B. Fast dose calculation in magnetic fields with GPUMCD. Phys Med Biol. 2011;56:5119–29.CrossRefPubMed
13.
go back to reference Jia X, Gu X, Jiang Graves Y, Folkerts M, Jiang S. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol. 2011;56:7017–31.CrossRefPubMed Jia X, Gu X, Jiang Graves Y, Folkerts M, Jiang S. GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol. 2011;56:7017–31.CrossRefPubMed
15.
go back to reference Jia X, George Xu X, Orton CG. Point/Counterpoint. GPU technology is the hope for near real-time Monte Carlo dose calculations. Med Phys. 2015;42(4):1474–6.CrossRefPubMed Jia X, George Xu X, Orton CG. Point/Counterpoint. GPU technology is the hope for near real-time Monte Carlo dose calculations. Med Phys. 2015;42(4):1474–6.CrossRefPubMed
16.
go back to reference Foster I, Zhao Y, Raicu I, Cloud Computing LS. Grid computing 360-degree compared. In: 2008 grid computing environments workshop; 2008. p. 1–10. Foster I, Zhao Y, Raicu I, Cloud Computing LS. Grid computing 360-degree compared. In: 2008 grid computing environments workshop; 2008. p. 1–10.
17.
go back to reference Wang H, Ma Y, Pratx G, Xing L. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure. Phys Med Biol. 2011;56(17):N175–81.CrossRefPubMedPubMedCentral Wang H, Ma Y, Pratx G, Xing L. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure. Phys Med Biol. 2011;56(17):N175–81.CrossRefPubMedPubMedCentral
18.
go back to reference Moore KL, Kagadis GC, McNutt TR, Moiseenko V, Mutic S. Vision 20/20: automation and advanced computing in clinical radiation oncology: automation and advanced computing in clinical radiation oncology. Med Phys. 2013;41(1):010901.CrossRef Moore KL, Kagadis GC, McNutt TR, Moiseenko V, Mutic S. Vision 20/20: automation and advanced computing in clinical radiation oncology: automation and advanced computing in clinical radiation oncology. Med Phys. 2013;41(1):010901.CrossRef
19.
go back to reference Miras H, Jiménez R, Miras C, Gomà C. CloudMC: a cloud computing application for Monte Carlo simulation. Phys Med Biol. 2013;58(8):N125.CrossRefPubMed Miras H, Jiménez R, Miras C, Gomà C. CloudMC: a cloud computing application for Monte Carlo simulation. Phys Med Biol. 2013;58(8):N125.CrossRefPubMed
27.
go back to reference Miras H, Terrón JA, Lallena AM. Monte Carlo simulation of COMS ophthalmic applicators loaded with Bebig I25.S16 seeds and comparison with planning system predictions. Phys Med. 2013;29(6):670–6.CrossRefPubMed Miras H, Terrón JA, Lallena AM. Monte Carlo simulation of COMS ophthalmic applicators loaded with Bebig I25.S16 seeds and comparison with planning system predictions. Phys Med. 2013;29(6):670–6.CrossRefPubMed
29.
go back to reference Perales Á, Cortés-Giraldo MA, Miras H, Arráns R, Gallardo MI. Dosimetric impact assessment using a general algorithm in geant4 simulations for a complex-shaped multileaf collimator. Phys Med. 2017;41:39–45.CrossRefPubMed Perales Á, Cortés-Giraldo MA, Miras H, Arráns R, Gallardo MI. Dosimetric impact assessment using a general algorithm in geant4 simulations for a complex-shaped multileaf collimator. Phys Med. 2017;41:39–45.CrossRefPubMed
30.
go back to reference Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8.CrossRef Allison J, Amako K, Apostolakis J, Araujo H, Dubois PA, Asai M, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53(1):270–8.CrossRef
31.
go back to reference Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in Geant4. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2016;835:186–225.CrossRef Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, et al. Recent developments in Geant4. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2016;835:186–225.CrossRef
32.
go back to reference Salter BJ, Sarkar V, Wang B, Shukla H, Szegedi M, Rassiah-Szegedi P. Rotational IMRT delivery using a digital linear accelerator in very high dose rate ‘burst mode’. Phys Med Biol. 2011;56(7):1931.CrossRefPubMed Salter BJ, Sarkar V, Wang B, Shukla H, Szegedi M, Rassiah-Szegedi P. Rotational IMRT delivery using a digital linear accelerator in very high dose rate ‘burst mode’. Phys Med Biol. 2011;56(7):1931.CrossRefPubMed
33.
go back to reference Dzierma Y, Nuesken F, Licht N, Ruebe C. A novel implementation of mARC treatment for non-dedicated planning systems using converted IMRT plans. Radiat Oncol. 2013;8:193.CrossRefPubMedPubMedCentral Dzierma Y, Nuesken F, Licht N, Ruebe C. A novel implementation of mARC treatment for non-dedicated planning systems using converted IMRT plans. Radiat Oncol. 2013;8:193.CrossRefPubMedPubMedCentral
34.
go back to reference Leal A, Sánchez-Doblado F, Arráns R, Roselló J, Pavón EC, Lagares JI. Routine IMRT verification by means of an automated Monte Carlo simulation system. Int J Radiat Oncol Biol Phys. 2003;56(1):58–68.CrossRefPubMed Leal A, Sánchez-Doblado F, Arráns R, Roselló J, Pavón EC, Lagares JI. Routine IMRT verification by means of an automated Monte Carlo simulation system. Int J Radiat Oncol Biol Phys. 2003;56(1):58–68.CrossRefPubMed
35.
go back to reference Pavón EC, Sánchez-Doblado F, Leal A, Capote R, Lagares JI, Perucha M, et al. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields. Phys Med Biol. 2003;48(17):2783.CrossRefPubMed Pavón EC, Sánchez-Doblado F, Leal A, Capote R, Lagares JI, Perucha M, et al. Total skin electron therapy treatment verification: Monte Carlo simulation and beam characteristics of large non-standard electron fields. Phys Med Biol. 2003;48(17):2783.CrossRefPubMed
36.
go back to reference Rogers DWO, Faddegon BA, Ding GX, Ma C-M, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1998;22(5):503–24.CrossRef Rogers DWO, Faddegon BA, Ding GX, Ma C-M, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1998;22(5):503–24.CrossRef
37.
go back to reference Ziegenhein P, Kozin IN, Kamerling CP, Oelfke U. Towards real-time photon Monte Carlo dose calculation in the cloud. Phys Med Biol. 2017;62(11):4375.CrossRefPubMed Ziegenhein P, Kozin IN, Kamerling CP, Oelfke U. Towards real-time photon Monte Carlo dose calculation in the cloud. Phys Med Biol. 2017;62(11):4375.CrossRefPubMed
38.
go back to reference Sempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000;45(8):2263.CrossRefPubMed Sempau J, Wilderman SJ, Bielajew AF. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol. 2000;45(8):2263.CrossRefPubMed
Metadata
Title
Monte Carlo verification of radiotherapy treatments with CloudMC
Authors
Hector Miras
Rubén Jiménez
Álvaro Perales
José Antonio Terrón
Alejandro Bertolet
Antonio Ortiz
José Macías
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1051-9

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue