Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Optimization of training periods for the estimation model of three-dimensional target positions using an external respiratory surrogate

Authors: Hiraku Iramina, Mitsuhiro Nakamura, Yusuke Iizuka, Takamasa Mitsuyoshi, Yukinori Matsuo, Takashi Mizowaki, Ikuo Kanno

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

During therapeutic beam irradiation, an unvisualized three-dimensional (3D) target position should be estimated using an external surrogate with an estimation model. Training periods for the developed model with no additional imaging during beam irradiation were optimized using clinical data.

Methods

Dual-source 4D-CBCT projection data for 20 lung cancer patients were used for validation. Each patient underwent one to three scans. The actual target positions of each scan were equally divided into two equal parts: one for the modeling and the other for the validating session. A quadratic target position estimation equation was constructed during the modeling session. Various training periods for the session—i.e., modeling periods (TM)—were employed: TM ∈ {5,10,15,25,35} [s]. First, the equation was used to estimate target positions in the validating session of the same scan (intra-scan estimations). Second, the equation was then used to estimate target positions in the validating session of another temporally different scan (inter-scan estimations). The baseline drift of the surrogate and target between scans was corrected. Various training periods for the baseline drift correction—i.e., correction periods (TCs)—were employed: TC ∈ {5,10,15; TC ≤ TM} [s]. Evaluations were conducted with and without the correction. The difference between the actual and estimated target positions was evaluated by the root-mean-square error (RMSE).

Results

The range of mean respiratory period and 3D motion amplitude of the target was 2.4–13.0 s and 2.8–34.2 mm, respectively. On intra-scan estimation, the median 3D RMSE was within 1.5–2.1 mm, supported by previous studies. On inter-scan estimation, median elapsed time between scans was 10.1 min. All TMs exhibited 75th percentile 3D RMSEs of 5.0–6.4 mm due to baseline drift of the surrogate and the target. After the correction, those for each TMs fell by 1.4–2.3 mm. The median 3D RMSE for both the 10-s TM and the TC period was 2.4 mm, which plateaued when the two training periods exceeded 10 s.

Conclusions

A widely-applicable estimation model for the 3D target positions during beam irradiation was developed. The optimal TM and TC for the model were both 10 s, to allow for more than one respiratory cycle.

Trial registration

UMIN000014825. Registered: 11 August 2014.
Appendix
Available only for authorised users
Literature
1.
go back to reference Iramina H, Nakamura M, Iizuka Y, Mitsuyoshi T, Matsuo Y, et al. The accuracy of extracted target motion trajectories in four-dimensional cone-beam computed tomography for lung cancer patients. Radiother Oncol. 2016;121(1):46–51.CrossRefPubMed Iramina H, Nakamura M, Iizuka Y, Mitsuyoshi T, Matsuo Y, et al. The accuracy of extracted target motion trajectories in four-dimensional cone-beam computed tomography for lung cancer patients. Radiother Oncol. 2016;121(1):46–51.CrossRefPubMed
2.
go back to reference Jones BL, Westerly D, Miften M. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections. Med Phys. 2015;42(2):694–702.CrossRefPubMed Jones BL, Westerly D, Miften M. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections. Med Phys. 2015;42(2):694–702.CrossRefPubMed
3.
go back to reference Takahashi W, Yamashita H, Kida S, Masutani Y, Sakumi A, Ohtomo K, et al. Verification of planning target volume settings in volumetric modulated arc therapy for stereotactic body radiation therapy by using in-treatment 4-dimensional cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2012;86(3):426–31.CrossRef Takahashi W, Yamashita H, Kida S, Masutani Y, Sakumi A, Ohtomo K, et al. Verification of planning target volume settings in volumetric modulated arc therapy for stereotactic body radiation therapy by using in-treatment 4-dimensional cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2012;86(3):426–31.CrossRef
4.
go back to reference Caillet V, Keall PJ, Colvill E, Hardcastle N, O’Brien R, Szymura K, et al. MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk. Radiother Oncol. 2017;124(1):18–24.CrossRefPubMed Caillet V, Keall PJ, Colvill E, Hardcastle N, O’Brien R, Szymura K, et al. MLC tracking for lung SABR reduces planning target volumes and dose to organs at risk. Radiother Oncol. 2017;124(1):18–24.CrossRefPubMed
5.
go back to reference Ehrbar S, Schmid S, Jöhl A, Klöck S, Guckenberger M, Riesterer O, et al. Validation of dynamic treatment-couch tracking for prostate SBRT. Med Phys. 2017;44(6):2466–77.CrossRefPubMed Ehrbar S, Schmid S, Jöhl A, Klöck S, Guckenberger M, Riesterer O, et al. Validation of dynamic treatment-couch tracking for prostate SBRT. Med Phys. 2017;44(6):2466–77.CrossRefPubMed
6.
go back to reference Toftegaard J, Hansen R, Ravkilde T, Macek K, Poulsen PR. An experimentally validated couch and MLC tracking simulator used to investigate hybrid couch-MLC tracking. Med Phys. 2017;44(3):798–809.CrossRefPubMed Toftegaard J, Hansen R, Ravkilde T, Macek K, Poulsen PR. An experimentally validated couch and MLC tracking simulator used to investigate hybrid couch-MLC tracking. Med Phys. 2017;44(3):798–809.CrossRefPubMed
7.
go back to reference Takamiya M, Nakamura M, Akimoto M, Ueki N, Yamada M, Tanabe H, et al. Multivariate analysis for the estimation of target localization error in fiducial marker-based radiotherapy. Med Phys. 2016;43(4):1907–12.CrossRefPubMed Takamiya M, Nakamura M, Akimoto M, Ueki N, Yamada M, Tanabe H, et al. Multivariate analysis for the estimation of target localization error in fiducial marker-based radiotherapy. Med Phys. 2016;43(4):1907–12.CrossRefPubMed
8.
go back to reference Poulsen PR, Cho B, Langen K, Kupelian P, Keal PJ. Three-dimensional prostate position estimation with a single x-ray imager utilizing the spatial probability density. Phys Med Biol. 2008;53(16):4331–53.CrossRefPubMed Poulsen PR, Cho B, Langen K, Kupelian P, Keal PJ. Three-dimensional prostate position estimation with a single x-ray imager utilizing the spatial probability density. Phys Med Biol. 2008;53(16):4331–53.CrossRefPubMed
9.
go back to reference Poulsen PR, Cho B, Keall PJ. A method to estimate mean position, motion magnitude, motion correlation, and trajectory of a tumor from cone-beam CT projections for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(5):1587–96.CrossRefPubMed Poulsen PR, Cho B, Keall PJ. A method to estimate mean position, motion magnitude, motion correlation, and trajectory of a tumor from cone-beam CT projections for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(5):1587–96.CrossRefPubMed
11.
go back to reference Li R, Fahimian BP, Xing LA. Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery. Med Phys. 2011;38(7):4205–14.CrossRefPubMedPubMedCentral Li R, Fahimian BP, Xing LA. Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery. Med Phys. 2011;38(7):4205–14.CrossRefPubMedPubMedCentral
12.
go back to reference Shieh CC, Keall PJ, Kuncic Z, Huang CY, Feain I. Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy. Phys Med Biol. 2015;60(8):9437–54.CrossRefPubMedPubMedCentral Shieh CC, Keall PJ, Kuncic Z, Huang CY, Feain I. Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy. Phys Med Biol. 2015;60(8):9437–54.CrossRefPubMedPubMedCentral
13.
go back to reference Cho B, Suh Y, Dieterich S, Keall PJ. A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring. Phys Med Biol. 2008;53(11):2837–55.CrossRefPubMed Cho B, Suh Y, Dieterich S, Keall PJ. A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring. Phys Med Biol. 2008;53(11):2837–55.CrossRefPubMed
14.
go back to reference Cho B, Poulsen PR, Keall PJ. Real-time tumor tracking using sequential kV imaging combined with respiratory monitoring: a general framework applicable to commonly used IGRT systems. Phys Med Biol. 2010;55(12):3299–316.CrossRefPubMedPubMedCentral Cho B, Poulsen PR, Keall PJ. Real-time tumor tracking using sequential kV imaging combined with respiratory monitoring: a general framework applicable to commonly used IGRT systems. Phys Med Biol. 2010;55(12):3299–316.CrossRefPubMedPubMedCentral
15.
go back to reference Cho B, Poulsen PR, Ruan D, Sawant A, Keall PJ. Experimental investigation of a general real-time 3D target localisation method using sequential kV imaging combined with respiratory monitoring. Phys Med Biol. 2012;57(22):7395–407.CrossRefPubMedPubMedCentral Cho B, Poulsen PR, Ruan D, Sawant A, Keall PJ. Experimental investigation of a general real-time 3D target localisation method using sequential kV imaging combined with respiratory monitoring. Phys Med Biol. 2012;57(22):7395–407.CrossRefPubMedPubMedCentral
16.
go back to reference Akimoto M, Nakamura M, Mukumoto N, Yamada M, Ueki N, Matsuo Y, et al. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals. Med. Phys. 2012;39(10):6309–15. Akimoto M, Nakamura M, Mukumoto N, Yamada M, Ueki N, Matsuo Y, et al. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals. Med. Phys. 2012;39(10):6309–15.
17.
go back to reference Bahig H, Campeau MP, Vu T, Doucet R, Nadeau DB, Fortin B, et al. Predictive parameters of CyberKnife fiducial-less (XSight lung) applicability for treatment of early non-small cell lung cancer: a single-center experience. Int J Radiat Oncol Biol Phys. 2013;87(3):583–9.CrossRefPubMed Bahig H, Campeau MP, Vu T, Doucet R, Nadeau DB, Fortin B, et al. Predictive parameters of CyberKnife fiducial-less (XSight lung) applicability for treatment of early non-small cell lung cancer: a single-center experience. Int J Radiat Oncol Biol Phys. 2013;87(3):583–9.CrossRefPubMed
18.
go back to reference Fassi A, Schaerer J, Fernandes M, Riboldi M, Sarrut D, Baroni G. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate. Int J Radiat Oncol Biol Phys. 2014;88(1):182–8.CrossRefPubMed Fassi A, Schaerer J, Fernandes M, Riboldi M, Sarrut D, Baroni G. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate. Int J Radiat Oncol Biol Phys. 2014;88(1):182–8.CrossRefPubMed
19.
go back to reference Akimoto M, Nakamura M, Mukumoto N, Tanabe H, Yamada M, Matsuo Y, et al. Predictive uncertainty in infrared marker-based dynamic tumor tracking with Vero4DRT. Med Phys 2013;40(9):091705–1–8. Akimoto M, Nakamura M, Mukumoto N, Tanabe H, Yamada M, Matsuo Y, et al. Predictive uncertainty in infrared marker-based dynamic tumor tracking with Vero4DRT. Med Phys 2013;40(9):091705–1–8.
20.
go back to reference Akimoto M, Nakamura M, Mukumoto N, Yamada M, Tanabe H, Ueki N, et al. Baseline drift correction of a correlation model for improving the prediction accuracy of infrared marker-based dynamic tumor tracking. J Appl Clin Med Phys. 2015;16(2):14–22.CrossRefPubMedCentral Akimoto M, Nakamura M, Mukumoto N, Yamada M, Tanabe H, Ueki N, et al. Baseline drift correction of a correlation model for improving the prediction accuracy of infrared marker-based dynamic tumor tracking. J Appl Clin Med Phys. 2015;16(2):14–22.CrossRefPubMedCentral
21.
go back to reference Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.CrossRefPubMed Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.CrossRefPubMed
22.
go back to reference Ionascu D, Jiang SB, Nishioka S, Shirato H, Berbeco RI. Internal-external correlation investigations of respiratory induced motion of lung tumors. Med Phys. 2007;34(10):3893–903.CrossRefPubMed Ionascu D, Jiang SB, Nishioka S, Shirato H, Berbeco RI. Internal-external correlation investigations of respiratory induced motion of lung tumors. Med Phys. 2007;34(10):3893–903.CrossRefPubMed
23.
go back to reference Ruan D, Fessler JA, Batler JM, Keall PJ. Real-time profiling of respiratory motion: baseline drift, frequency variation and fundamental pattern change. Phys Med Biol. 2009;54(15):4777–92.CrossRefPubMed Ruan D, Fessler JA, Batler JM, Keall PJ. Real-time profiling of respiratory motion: baseline drift, frequency variation and fundamental pattern change. Phys Med Biol. 2009;54(15):4777–92.CrossRefPubMed
24.
go back to reference Ruan D, Fessler JA, Balter JM, Berbeco RI, Nishioka S, Shirato H. Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach. Phys Med Biol. 2008;53(11):2923–36.CrossRefPubMed Ruan D, Fessler JA, Balter JM, Berbeco RI, Nishioka S, Shirato H. Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach. Phys Med Biol. 2008;53(11):2923–36.CrossRefPubMed
25.
go back to reference Suh Y, Dieterich S, Cho B, Keal PJ. An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Phys Med Biol. 2008;53(13):3623–40.CrossRefPubMed Suh Y, Dieterich S, Cho B, Keal PJ. An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Phys Med Biol. 2008;53(13):3623–40.CrossRefPubMed
26.
go back to reference Thomas EM, Popple RA, Predergast BM, Clark GM, Dobelbower MC, Fiveash JB. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys. 2013;14(6):155–66.CrossRefPubMedCentral Thomas EM, Popple RA, Predergast BM, Clark GM, Dobelbower MC, Fiveash JB. Effects of flattening filter-free and volumetric-modulated arc therapy delivery on treatment efficiency. J Appl Clin Med Phys. 2013;14(6):155–66.CrossRefPubMedCentral
27.
go back to reference Nakamura M, Ishihara Y, Matsuo Y, Iizuka Y, Ueki N, Iramina H, et al. Quantification of the kV x-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients with Monte Carlo simulation. J Radiat Res 2018: in press. Nakamura M, Ishihara Y, Matsuo Y, Iizuka Y, Ueki N, Iramina H, et al. Quantification of the kV x-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients with Monte Carlo simulation. J Radiat Res 2018: in press.
Metadata
Title
Optimization of training periods for the estimation model of three-dimensional target positions using an external respiratory surrogate
Authors
Hiraku Iramina
Mitsuhiro Nakamura
Yusuke Iizuka
Takamasa Mitsuyoshi
Yukinori Matsuo
Takashi Mizowaki
Ikuo Kanno
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1019-9

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue