Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Investigation of irradiated volume in linac-based brain hypo-fractionated stereotactic radiotherapy

Authors: Mark Ruschin, Arjun Sahgal, Hany Soliman, Sten Myrehaug, May Tsao, Collins Yeboah, Arman Sarfehnia, Brige Chugh, Alex Kiss, Young Lee

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Emerging techniques such as brain hypo-fractionated radiotherapy (HF-RT) involve complex cases with limited guidelines for plan quality and normal tissue tolerances. The purpose of the present study was to statistically parameterize irradiated volume independently of dose prescription, or margin to determine what spread in achievable irradiated volume one may expect for a given case.

Methods

We defined EXT as the total tissue within the external contour of the patient (including the target) and we defined BMP as the contour of the brain minus PTV. Irradiated volumes of EXT and BMP at specific doses (i.e. 50, 60%, etc., of the prescribed dose) were extracted from 135 single-target HF-RT clinical cases, each planned with a single-arc, homogeneous (SAHO) approach in which target maximum dose (Dmax) was constrained to <130% of the prescribed dose. Irradiated volumes were subsequently measured for cases involving 2 targets (N = 29), 3 targets (N = 7) and >3 targets (N = 10) to investigate the effect of target number. We also examined the effect of shape complexity. A series of best fit curves with confidence and prediction intervals were generated for irradiated volume versus total target volume and the resulting model was subsequently validated on a subsequent set of 23 consecutive prospective cases not originally used in curve-fitting. A subset of 30 HF-RT cases were re-planned with a well-published four-arc, heterogeneous (FAHE) radiosurgery planning approach (Dmax could exceed 130%) to demonstrate how technique affects irradiated volume.

Results

For SAHO, strong correlation (R2 > 0.98) was found for predicting irradiated volumes. For a given total target volume, irradiated-volume increased by a range of 1.4–2.9× for >3 versus single-targets depending on isodose level. Shape complexity had minor impact on irradiated volume. There was no statistical difference in irradiated volumes between validation and input data (p > 0.2). The FAHE-generated irradiated volumes yielded curves and prediction and confidence bands that agreed well with published data indicating that the proposed approach is feasible for cross-institutional comparisons.

Conclusions

A description of irradiated volume for linac-based HF-RT is proposed based on population data. We have demonstrated that the proposed approach is feasible for inter and intra-institutional comparisons.
Literature
1.
go back to reference Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.CrossRefPubMed Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.CrossRefPubMed
2.
go back to reference Sahgal A, Aoyama H, Kocher M, Neupane B, Collette S, Tago M, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91:710–7.CrossRefPubMed Sahgal A, Aoyama H, Kocher M, Neupane B, Collette S, Tago M, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis. Int J Radiat Oncol Biol Phys. 2015;91:710–7.CrossRefPubMed
3.
go back to reference Minniti G, Scaringi C, Paolini S, Lanzetta G, Romano A, Cicone F, et al. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int J Radiat Oncol Biol Phys. 2016;95:1142–8.CrossRefPubMed Minniti G, Scaringi C, Paolini S, Lanzetta G, Romano A, Cicone F, et al. Single-Fraction Versus Multifraction (3 × 9 Gy) Stereotactic Radiosurgery for Large (>2 cm) Brain Metastases: A Comparative Analysis of Local Control and Risk of Radiation-Induced Brain Necrosis. Int J Radiat Oncol Biol Phys. 2016;95:1142–8.CrossRefPubMed
4.
go back to reference Al-Omair A, Soliman H, Xu W, Karotki A, Mainprize T, Phan N, et al. Hypofractionated stereotactic radiotherapy in five daily fractions for post-operative surgical cavities in brain metastases patients with and without prior whole brain radiation. Technol Cancer Res Treat. 2013;12:493–9.CrossRefPubMedPubMedCentral Al-Omair A, Soliman H, Xu W, Karotki A, Mainprize T, Phan N, et al. Hypofractionated stereotactic radiotherapy in five daily fractions for post-operative surgical cavities in brain metastases patients with and without prior whole brain radiation. Technol Cancer Res Treat. 2013;12:493–9.CrossRefPubMedPubMedCentral
5.
go back to reference Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81:18–24.CrossRefPubMed Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81:18–24.CrossRefPubMed
6.
go back to reference Manning MA, Cardinale RM, Benedict SH, Kavanagh BD, Zwicker RD, Amir C, et al. Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients with brain metastases. Int J Radiat Oncol Biol Phys. 2000;47:603–8.CrossRefPubMed Manning MA, Cardinale RM, Benedict SH, Kavanagh BD, Zwicker RD, Amir C, et al. Hypofractionated stereotactic radiotherapy as an alternative to radiosurgery for the treatment of patients with brain metastases. Int J Radiat Oncol Biol Phys. 2000;47:603–8.CrossRefPubMed
7.
go back to reference Khan L, Soliman H, Xu W, Ruschin ME, Phan N, Lochray F, et al. Outcomes With Hypofractionated Stereotactic Radiation Therapy (hfSRT) in Patients With Intact Brain Metastases and Postoperative Surgical Cavities. Int J Radiat Oncol Biol Phys. 2014;90:S318.CrossRef Khan L, Soliman H, Xu W, Ruschin ME, Phan N, Lochray F, et al. Outcomes With Hypofractionated Stereotactic Radiation Therapy (hfSRT) in Patients With Intact Brain Metastases and Postoperative Surgical Cavities. Int J Radiat Oncol Biol Phys. 2014;90:S318.CrossRef
8.
go back to reference Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76:S20–7.CrossRefPubMedPubMedCentral Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76:S20–7.CrossRefPubMedPubMedCentral
9.
go back to reference Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77:996–1001.CrossRefPubMed Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77:996–1001.CrossRefPubMed
10.
go back to reference Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006;64:419–24.CrossRefPubMed Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006;64:419–24.CrossRefPubMed
11.
go back to reference Ma L, Petti P, Wang B, Descovich M, Chuang C, Barani IJ, et al. Apparatus dependence of normal brain tissue dose in stereotactic radiosurgery for multiple brain metastases. J Neurosurg. 2011;114:1580–4.CrossRefPubMed Ma L, Petti P, Wang B, Descovich M, Chuang C, Barani IJ, et al. Apparatus dependence of normal brain tissue dose in stereotactic radiosurgery for multiple brain metastases. J Neurosurg. 2011;114:1580–4.CrossRefPubMed
12.
go back to reference Thomas EM, Popple RA, Wu X, Clark GM, Markert JM, Guthrie BL, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014;75:409–17. discussion 17-8CrossRefPubMedPubMedCentral Thomas EM, Popple RA, Wu X, Clark GM, Markert JM, Guthrie BL, et al. Comparison of plan quality and delivery time between volumetric arc therapy (RapidArc) and Gamma Knife radiosurgery for multiple cranial metastases. Neurosurgery. 2014;75:409–17. discussion 17-8CrossRefPubMedPubMedCentral
13.
go back to reference Hossain S, Keeling V, Hildebrand K, Ahmad S, Larson DA, Sahgal A, et al. Normal Brain Sparing With Increasing Number of Beams and Isocenters in Volumetric-Modulated Arc Beam Radiosurgery of Multiple Brain Metastases. Technol Cancer Res Treat. 2016;15:766–71. Hossain S, Keeling V, Hildebrand K, Ahmad S, Larson DA, Sahgal A, et al. Normal Brain Sparing With Increasing Number of Beams and Isocenters in Volumetric-Modulated Arc Beam Radiosurgery of Multiple Brain Metastases. Technol Cancer Res Treat. 2016;15:766–71.
14.
go back to reference Shiraishi S, Tan J, Olsen LA, Moore KL. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery. Med Phys. 2015;42:908.CrossRefPubMed Shiraishi S, Tan J, Olsen LA, Moore KL. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery. Med Phys. 2015;42:908.CrossRefPubMed
15.
go back to reference Narayanasamy G, Smith A, Van Meter E, McGarry R, Molloy JA. Total target volume is a better predictor of whole brain dose from gamma stereotactic radiosurgery than the number, shape, or location of the lesions. Med Phys. 2013;40:091714.CrossRefPubMedPubMedCentral Narayanasamy G, Smith A, Van Meter E, McGarry R, Molloy JA. Total target volume is a better predictor of whole brain dose from gamma stereotactic radiosurgery than the number, shape, or location of the lesions. Med Phys. 2013;40:091714.CrossRefPubMedPubMedCentral
16.
go back to reference Bohoudi O, Bruynzeel AM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Palacios MA. Isotoxic radiosurgery planning for brain metastases. Radiother Oncol. 2016;120:253–57. Bohoudi O, Bruynzeel AM, Lagerwaard FJ, Cuijpers JP, Slotman BJ, Palacios MA. Isotoxic radiosurgery planning for brain metastases. Radiother Oncol. 2016;120:253–57.
17.
go back to reference Ruschin M, Lee Y, Beachey D, Yeboah C, Wronski M, Babic S, et al. Investigation of Dose Falloff for Intact Brain Metastases and Surgical Cavities Using Hypofractionated Volumetric Modulated Arc Radiotherapy. Technol Cancer Res Treat. 2016;15:130–38. Ruschin M, Lee Y, Beachey D, Yeboah C, Wronski M, Babic S, et al. Investigation of Dose Falloff for Intact Brain Metastases and Surgical Cavities Using Hypofractionated Volumetric Modulated Arc Radiotherapy. Technol Cancer Res Treat. 2016;15:130–38.
18.
go back to reference Audet C, Poffenbarger BA, Chang P, Jackson PS, Lundahl RE, Ryu SI, et al. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs. Med Phys. 2011;38:5863–72.CrossRefPubMed Audet C, Poffenbarger BA, Chang P, Jackson PS, Lundahl RE, Ryu SI, et al. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs. Med Phys. 2011;38:5863–72.CrossRefPubMed
19.
go back to reference Patel I, Glendinning AG, Kirby MC. Dosimetric characteristics of the Elekta Beam Modulator. Phys Med Biol. 2005;50:5479–92.CrossRefPubMed Patel I, Glendinning AG, Kirby MC. Dosimetric characteristics of the Elekta Beam Modulator. Phys Med Biol. 2005;50:5479–92.CrossRefPubMed
20.
go back to reference Clark GM, Popple RA, Young PE, Fiveash JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys. 2010;76:296–302.CrossRefPubMed Clark GM, Popple RA, Young PE, Fiveash JB. Feasibility of single-isocenter volumetric modulated arc radiosurgery for treatment of multiple brain metastases. Int J Radiat Oncol Biol Phys. 2010;76:296–302.CrossRefPubMed
21.
go back to reference Huang Y, Chin K, Robbins JR, Kim J, Li H, Amro H, et al. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA). Radiother Oncol. 2014;112:128–32.CrossRefPubMed Huang Y, Chin K, Robbins JR, Kim J, Li H, Amro H, et al. Radiosurgery of multiple brain metastases with single-isocenter dynamic conformal arcs (SIDCA). Radiother Oncol. 2014;112:128–32.CrossRefPubMed
22.
go back to reference Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27:1231–9.CrossRefPubMed Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27:1231–9.CrossRefPubMed
23.
go back to reference Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93(Suppl 3):219–22.PubMed Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93(Suppl 3):219–22.PubMed
Metadata
Title
Investigation of irradiated volume in linac-based brain hypo-fractionated stereotactic radiotherapy
Authors
Mark Ruschin
Arjun Sahgal
Hany Soliman
Sten Myrehaug
May Tsao
Collins Yeboah
Arman Sarfehnia
Brige Chugh
Alex Kiss
Young Lee
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0853-5

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue