Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

A comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT

Authors: Christina Zhou, Nathan Bennion, Rongtao Ma, Xiaoying Liang, Shuo Wang, Kristina Zvolanek, Megan Hyun, Xiaobo Li, Sumin Zhou, Weining Zhen, Chi Lin, Andrew Wahl, Dandan Zheng

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Type-C dose algorithms provide more accurate dosimetry for lung SBRT treatment planning. However, because current dosimetric protocols were developed based on conventional algorithms, its applicability for the new generation algorithms needs to be determined. Previous studies on this issue used small sample sizes and reached discordant conclusions. Our study assessed dose calculation of a Type-C algorithm with current dosimetric protocols in a large patient cohort, in order to demonstrate the dosimetric impacts and necessary treatment planning steps of switching from a Type-B to a Type-C dose algorithm for lung SBRT planning.

Methods

Fifty-two lung SBRT patients were included, each planned using coplanar VMAT arcs, normalized to D95% = prescription dose using a Type-B algorithm. These were compared against three Type-C plans: re-calculated plans (identical plan parameters), re-normalized plans (D95% = prescription dose), and re-optimized plans. Dosimetric endpoints were extracted and compared among the four plans, including RTOG dosimetric criteria: (R100%, R50%, D2cm, V105%, and lung V20), PTV Dmin, Dmax, Dmean, V% and D90%, PTV coverage (V100%), homogeneity index (HI), and Paddick conformity index (PCI).

Results

Re-calculated Type-C plans resulted in decreased PTV Dmin with a mean difference of 5.2% and increased Dmax with a mean difference of 3.1%, similar or improved RTOG dose compliance, but compromised PTV coverage (mean D95% and V100% reduction of 2.5 and 8.1%, respectively). Seven plans had >5% D95% reduction (maximum reduction = 16.7%), and 18 plans had >5% V100% reduction (maximum reduction = 60.0%). Re-normalized Type-C plans restored target coverage, but yielded degraded plan conformity (average PCI reduction 4.0%), and RTOG dosimetric criteria deviation worsened in 11 plans, in R50%, D2cm, and R100%. Except for one case, re-optimized Type-C plans restored RTOG compliance achieved by the original Type-B plans, resulting in similar dosimetric values but slightly higher target dose heterogeneity (mean HI increase = 13.2%).

Conclusions

Type-B SBRT lung plans considerably overestimate target coverage for some patients, necessitating Type-C re-normalization or re-optimization. Current RTOG dosimetric criteria appear to remain appropriate.
Literature
1.
2.
go back to reference Uematsu M, Shioda A, Suda A, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: A 5-year experience. Int J Radiat Oncol Biol Phys. 2001;51(3):666–70.CrossRefPubMed Uematsu M, Shioda A, Suda A, et al. Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: A 5-year experience. Int J Radiat Oncol Biol Phys. 2001;51(3):666–70.CrossRefPubMed
3.
go back to reference Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: Results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124(5):1946–55.CrossRefPubMed Timmerman R, Papiez L, McGarry R, et al. Extracranial stereotactic radioablation: Results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest. 2003;124(5):1946–55.CrossRefPubMed
4.
5.
go back to reference Guckenberger M, Klement RJ, Allgauer M, et al. Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy. Radiother Oncol. 2016;118(3):485–91.CrossRefPubMed Guckenberger M, Klement RJ, Allgauer M, et al. Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy. Radiother Oncol. 2016;118(3):485–91.CrossRefPubMed
6.
go back to reference Cai J, Malhotra HK, Orton CG. Point/counterpoint. A 3D-conformal technique is better than IMRT or VMAT for lung SBRT. Med Phys. 2014;41(4):040601.CrossRefPubMed Cai J, Malhotra HK, Orton CG. Point/counterpoint. A 3D-conformal technique is better than IMRT or VMAT for lung SBRT. Med Phys. 2014;41(4):040601.CrossRefPubMed
7.
go back to reference Zhang GG, Ku L, Dilling TJ, et al. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: A dosimetric comparison with 3D technique. Radiat Oncol. 2011;6:152. 717X-6-152.CrossRefPubMedPubMedCentral Zhang GG, Ku L, Dilling TJ, et al. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: A dosimetric comparison with 3D technique. Radiat Oncol. 2011;6:152. 717X-6-152.CrossRefPubMedPubMedCentral
8.
go back to reference Ong C, Verbakel WF, Cuijpers JP, Slotman BJ, Senan S. Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery. Int J Radiat Oncol Biol Phys. 2011;79(1):305–11.CrossRefPubMed Ong C, Verbakel WF, Cuijpers JP, Slotman BJ, Senan S. Dosimetric impact of interplay effect on RapidArc lung stereotactic treatment delivery. Int J Radiat Oncol Biol Phys. 2011;79(1):305–11.CrossRefPubMed
9.
go back to reference Ong CL, Verbakel WF, Dahele M, Cuijpers JP, Slotman BJ, Senan S. Fast arc delivery for stereotactic body radiotherapy of vertebral and lung tumors. Int J Radiat Oncol Biol Phys. 2012;83(1):e137–43.CrossRefPubMed Ong CL, Verbakel WF, Dahele M, Cuijpers JP, Slotman BJ, Senan S. Fast arc delivery for stereotactic body radiotherapy of vertebral and lung tumors. Int J Radiat Oncol Biol Phys. 2012;83(1):e137–43.CrossRefPubMed
10.
go back to reference Stambaugh C, Nelms BE, Dilling T, et al. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments. Med Phys. 2013;40(9):091710.CrossRefPubMed Stambaugh C, Nelms BE, Dilling T, et al. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments. Med Phys. 2013;40(9):091710.CrossRefPubMed
11.
go back to reference Navarria P, Ascolese AM, Mancosu P, et al. Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC). Radiother Oncol. 2013;107(3):414–8.CrossRefPubMed Navarria P, Ascolese AM, Mancosu P, et al. Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC). Radiother Oncol. 2013;107(3):414–8.CrossRefPubMed
12.
go back to reference Zhou S, Zhu X, Zhang M, et al. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy. Phys Med Biol. 2016;61(23):8157–79.CrossRefPubMed Zhou S, Zhu X, Zhang M, et al. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy. Phys Med Biol. 2016;61(23):8157–79.CrossRefPubMed
13.
go back to reference Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM task group no. 105: Issues associated with clinical implementation of monte carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM task group no. 105: Issues associated with clinical implementation of monte carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.CrossRefPubMed
14.
go back to reference Herman Tde L, Gabrish H, Herman TS, Vlachaki MT, Ahmad S. Impact of tissue heterogeneity corrections in stereotactic body radiation therapy treatment plans for lung cancer. J Med Phys. 2010;35(3):170–3.CrossRefPubMed Herman Tde L, Gabrish H, Herman TS, Vlachaki MT, Ahmad S. Impact of tissue heterogeneity corrections in stereotactic body radiation therapy treatment plans for lung cancer. J Med Phys. 2010;35(3):170–3.CrossRefPubMed
15.
go back to reference Vanderstraeten B, Reynaert N, Paelinck L, et al. Accuracy of patient dose calculation for lung IMRT: A comparison of monte carlo, convolution/superposition, and pencil beam computations. Med Phys. 2006;33(9):3149–58.CrossRefPubMed Vanderstraeten B, Reynaert N, Paelinck L, et al. Accuracy of patient dose calculation for lung IMRT: A comparison of monte carlo, convolution/superposition, and pencil beam computations. Med Phys. 2006;33(9):3149–58.CrossRefPubMed
16.
go back to reference Schuring D, Hurkmans CW. Developing and evaluating stereotactic lung RT trials: What we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol. 2008;3:21. 717X-3-21.CrossRefPubMedPubMedCentral Schuring D, Hurkmans CW. Developing and evaluating stereotactic lung RT trials: What we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol. 2008;3:21. 717X-3-21.CrossRefPubMedPubMedCentral
17.
go back to reference Xiao Y, Papiez L, Paulus R, et al. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: Stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.CrossRefPubMedPubMedCentral Xiao Y, Papiez L, Paulus R, et al. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: Stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.CrossRefPubMedPubMedCentral
18.
go back to reference Aarup LR, Nahum AE, Zacharatou C, et al. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol. 2009;91(3):405–14.CrossRefPubMed Aarup LR, Nahum AE, Zacharatou C, et al. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol. 2009;91(3):405–14.CrossRefPubMed
19.
go back to reference Ojala JJ, Kapanen MK, Hyodynmaa SJ, Wigren TK, Pitkanen MA. Performance of dose calculation algorithms from three generations in lung SBRT: Comparison with full monte carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4662.CrossRefPubMed Ojala JJ, Kapanen MK, Hyodynmaa SJ, Wigren TK, Pitkanen MA. Performance of dose calculation algorithms from three generations in lung SBRT: Comparison with full monte carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4662.CrossRefPubMed
20.
go back to reference Fogliata A, Vanetti E, Albers D, et al. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: Comparison with monte carlo calculations. Phys Med Biol. 2007;52(5):1363–85.CrossRefPubMed Fogliata A, Vanetti E, Albers D, et al. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: Comparison with monte carlo calculations. Phys Med Biol. 2007;52(5):1363–85.CrossRefPubMed
21.
go back to reference Hurkmans CW, Cuijpers JP, Lagerwaard FJ, et al. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: Report from the quality assurance working party of the randomised phase III ROSEL study. Radiat Oncol. 2009;4:1. 717X-4-1.CrossRefPubMedPubMedCentral Hurkmans CW, Cuijpers JP, Lagerwaard FJ, et al. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: Report from the quality assurance working party of the randomised phase III ROSEL study. Radiat Oncol. 2009;4:1. 717X-4-1.CrossRefPubMedPubMedCentral
22.
go back to reference Miura H, Masai N, Oh RJ, et al. Clinical introduction of monte carlo treatment planning for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2014;15(1):4202.CrossRefPubMed Miura H, Masai N, Oh RJ, et al. Clinical introduction of monte carlo treatment planning for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2014;15(1):4202.CrossRefPubMed
23.
go back to reference van der Voort van Zyp NC, Hoogeman MS, van de Water S, et al. Clinical introduction of monte carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol. 2010;96(1):55–60.CrossRef van der Voort van Zyp NC, Hoogeman MS, van de Water S, et al. Clinical introduction of monte carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol. 2010;96(1):55–60.CrossRef
24.
go back to reference Zhuang T, Djemil T, Qi P, et al. Dose calculation differences between monte carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy. J Appl Clin Med Phys. 2013;14(2):4011.CrossRefPubMed Zhuang T, Djemil T, Qi P, et al. Dose calculation differences between monte carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy. J Appl Clin Med Phys. 2013;14(2):4011.CrossRefPubMed
25.
go back to reference Liu MB, Eclov NC, Trakul N, et al. Clinical impact of dose overestimation by effective path length calculation in stereotactic ablative radiation therapy of lung tumors. Pract Radiat Oncol. 2013;3(4):294–300.CrossRefPubMed Liu MB, Eclov NC, Trakul N, et al. Clinical impact of dose overestimation by effective path length calculation in stereotactic ablative radiation therapy of lung tumors. Pract Radiat Oncol. 2013;3(4):294–300.CrossRefPubMed
26.
go back to reference Knoos T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785–807.CrossRefPubMed Knoos T, Wieslander E, Cozzi L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol. 2006;51(22):5785–807.CrossRefPubMed
27.
go back to reference Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys. 2014;15(1):4474.CrossRefPubMed Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys. 2014;15(1):4474.CrossRefPubMed
28.
go back to reference Hasenbalg F, Neuenschwander H, Mini R, Born EJ. Collapsed cone convolution and analytical anisotropic algorithm dose calculations compared to VMC++ monte carlo simulations in clinical cases. Phys Med Biol. 2007;52(13):3679–91.CrossRefPubMed Hasenbalg F, Neuenschwander H, Mini R, Born EJ. Collapsed cone convolution and analytical anisotropic algorithm dose calculations compared to VMC++ monte carlo simulations in clinical cases. Phys Med Biol. 2007;52(13):3679–91.CrossRefPubMed
29.
go back to reference Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84(2):508–13.CrossRefPubMedPubMedCentral Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84(2):508–13.CrossRefPubMedPubMedCentral
30.
go back to reference Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of acuros XB deterministic radiation transport method with monte carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651–64.CrossRefPubMedPubMedCentral Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of acuros XB deterministic radiation transport method with monte carlo and model-based convolution methods in heterogeneous media. Med Phys. 2011;38(5):2651–64.CrossRefPubMedPubMedCentral
31.
go back to reference Fragoso M, Wen N, Kumar S, et al. Dosimetric verification and clinical evaluation of a new commercially available monte carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning. Phys Med Biol. 2010;55(16):4445–64.CrossRefPubMed Fragoso M, Wen N, Kumar S, et al. Dosimetric verification and clinical evaluation of a new commercially available monte carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning. Phys Med Biol. 2010;55(16):4445–64.CrossRefPubMed
32.
go back to reference Sharma SC, Ott JT, Williams JB, Dickow D. Clinical implications of adopting monte carlo treatment planning for CyberKnife. J Appl Clin Med Phys. 2010;11(1):3142.CrossRefPubMed Sharma SC, Ott JT, Williams JB, Dickow D. Clinical implications of adopting monte carlo treatment planning for CyberKnife. J Appl Clin Med Phys. 2010;11(1):3142.CrossRefPubMed
33.
go back to reference Fotina I, Winkler P, Kunzler T, Reiterer J, Simmat I, Georg D. Advanced kernel methods vs. monte carlo-based dose calculation for high energy photon beams. Radiother Oncol. 2009;93(3):645–53.CrossRefPubMed Fotina I, Winkler P, Kunzler T, Reiterer J, Simmat I, Georg D. Advanced kernel methods vs. monte carlo-based dose calculation for high energy photon beams. Radiother Oncol. 2009;93(3):645–53.CrossRefPubMed
34.
go back to reference Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of acuros XB with monte carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208–21.CrossRefPubMed Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of acuros XB with monte carlo methods for photon dose calculations. Med Phys. 2011;38(4):2208–21.CrossRefPubMed
35.
go back to reference Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587–95.CrossRefPubMed Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587–95.CrossRefPubMed
36.
go back to reference Tsuruta Y, Nakata M, Nakamura M, et al. Dosimetric comparison of acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Med Phys. 2014;41(8):081715.CrossRefPubMed Tsuruta Y, Nakata M, Nakamura M, et al. Dosimetric comparison of acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer. Med Phys. 2014;41(8):081715.CrossRefPubMed
37.
go back to reference RTOG. A randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT(schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. RTOG0915. 2012. RTOG. A randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT(schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. RTOG0915. 2012.
38.
go back to reference RTOG. Seamless phase I/II study of stereotactic lung radiotherapy (SBRT) for early stage, centrally located, non-small cell lung cancer (NSCLC) in medically inoperable patients. RTOG 0813. 2012. RTOG. Seamless phase I/II study of stereotactic lung radiotherapy (SBRT) for early stage, centrally located, non-small cell lung cancer (NSCLC) in medically inoperable patients. RTOG 0813. 2012.
39.
go back to reference Pokhrel D, Badkul R, Jiang H, Kumar P, Wang F. Technical note: Dosimetric evaluation of monte carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters. J Appl Clin Med Phys. 2015;16(1):5058.CrossRefPubMed Pokhrel D, Badkul R, Jiang H, Kumar P, Wang F. Technical note: Dosimetric evaluation of monte carlo algorithm in iPlan for stereotactic ablative body radiotherapy (SABR) for lung cancer patients using RTOG 0813 parameters. J Appl Clin Med Phys. 2015;16(1):5058.CrossRefPubMed
40.
go back to reference Pokhrel D, Sood S, Badkul R, et al. Assessment of monte carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy. J Appl Clin Med Phys. 2016;17(3):277–93.CrossRefPubMed Pokhrel D, Sood S, Badkul R, et al. Assessment of monte carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy. J Appl Clin Med Phys. 2016;17(3):277–93.CrossRefPubMed
41.
go back to reference Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM task group 101. Med Phys. 2010;37(8):4078–101.CrossRefPubMed Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: The report of AAPM task group 101. Med Phys. 2010;37(8):4078–101.CrossRefPubMed
42.
go back to reference Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. technical note. J Neurosurg. 2000;93 Suppl 3:219–22.PubMed Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. technical note. J Neurosurg. 2000;93 Suppl 3:219–22.PubMed
43.
go back to reference van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37(3):731–6.CrossRef van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: Application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37(3):731–6.CrossRef
44.
go back to reference Huang B, Wu L, Lin P, Chen C. Dose calculation of acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53. -015-0357-0.CrossRefPubMedPubMedCentral Huang B, Wu L, Lin P, Chen C. Dose calculation of acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53. -015-0357-0.CrossRefPubMedPubMedCentral
45.
go back to reference Zvolanek K, Ma R, Zhou C, et al. Still equivalent for dose calculation in the monte carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms. Med Phys. 2017; 10.1002/mp.12193. Zvolanek K, Ma R, Zhou C, et al. Still equivalent for dose calculation in the monte carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms. Med Phys. 2017; 10.​1002/​mp.​12193.
46.
go back to reference Zheng D, Zhang Q, Liang X, et al. Effect of the normalized prescription isodose line on the magnitude of monte carlo vs. pencil beam target dose differences for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2016;17(4):48–58.CrossRefPubMed Zheng D, Zhang Q, Liang X, et al. Effect of the normalized prescription isodose line on the magnitude of monte carlo vs. pencil beam target dose differences for lung stereotactic body radiotherapy. J Appl Clin Med Phys. 2016;17(4):48–58.CrossRefPubMed
47.
go back to reference Zheng D, Zhu X, Zhang Q, et al. Target dose conversion modeling from pencil beam (PB) to monte carlo (MC) for lung SBRT. Radiat Oncol. 2016;11:83. 016-0661-3.CrossRefPubMedPubMedCentral Zheng D, Zhu X, Zhang Q, et al. Target dose conversion modeling from pencil beam (PB) to monte carlo (MC) for lung SBRT. Radiat Oncol. 2016;11:83. 016-0661-3.CrossRefPubMedPubMedCentral
48.
go back to reference De Ruysscher D, Faivre-Finn C, Nestle U, et al. European organisation for research and treatment of cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J Clin Oncol. 2010;28(36):5301–10.CrossRefPubMed De Ruysscher D, Faivre-Finn C, Nestle U, et al. European organisation for research and treatment of cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer. J Clin Oncol. 2010;28(36):5301–10.CrossRefPubMed
49.
go back to reference Guckenberger M, Allgauer M, Appold S, et al. Safety and efficacy of stereotactic body radiotherapy for stage 1 non-small-cell lung cancer in routine clinical practice: A patterns-of-care and outcome analysis. J Thorac Oncol. 2013;8(8):1050–8.CrossRefPubMed Guckenberger M, Allgauer M, Appold S, et al. Safety and efficacy of stereotactic body radiotherapy for stage 1 non-small-cell lung cancer in routine clinical practice: A patterns-of-care and outcome analysis. J Thorac Oncol. 2013;8(8):1050–8.CrossRefPubMed
50.
go back to reference van Baardwijk A, Tome WA, van Elmpt W, et al. Is high-dose stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC) overkill? A systematic review. Radiother Oncol. 2012;105(2):145–9.CrossRefPubMed van Baardwijk A, Tome WA, van Elmpt W, et al. Is high-dose stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC) overkill? A systematic review. Radiother Oncol. 2012;105(2):145–9.CrossRefPubMed
Metadata
Title
A comprehensive dosimetric study on switching from a Type-B to a Type-C dose algorithm for modern lung SBRT
Authors
Christina Zhou
Nathan Bennion
Rongtao Ma
Xiaoying Liang
Shuo Wang
Kristina Zvolanek
Megan Hyun
Xiaobo Li
Sumin Zhou
Weining Zhen
Chi Lin
Andrew Wahl
Dandan Zheng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0816-x

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue