Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Predicting liver SBRT eligibility and plan quality for VMAT and 4π plans

Authors: Angelia Tran, Kaley Woods, Dan Nguyen, Victoria Y. Yu, Tianye Niu, Minsong Cao, Percy Lee, Ke Sheng

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

It is useful to predict planned dosimetry and determine the eligibility of a liver cancer patient for SBRT treatment using knowledge based planning (KBP). We compare the predictive accuracy using the overlap volume histogram (OVH) and statistical voxel dose learning (SVDL) KBP prediction models for coplanar VMAT to non-coplanar 4π radiotherapy plans.

Methods

In this study, 21 liver SBRT cases were selected, which were initially treated using coplanar VMAT plans. They were then re-planned using 4π IMRT plans with 20 inversely optimized non-coplanar beams. OVH was calculated by expanding the planning target volume (PTV) and then plotting the percent overlap volume v with the liver vs. r v , the expansion distance. SVDL calculated the distance to the PTV for all liver voxels and bins the voxels of the same distance. Their dose information is approximated by either taking the median or using a skew-normal or non-parametric fit, which was then applied to voxels of unknown dose for each patient in a leave-one-out test. The liver volume receiving less than 15 Gy (V<15Gy), DVHs, and 3D dose distributions were predicted and compared between the prediction models and planning methods.

Results

On average, V<15Gy was predicted within 5%. SVDL was more accurate than OVH and able to predict DVH and 3D dose distributions. Median SVDL yielded predictive errors similar or lower than the fitting methods and is more computationally efficient. Prediction of the 4π dose was more accurate compared to VMAT for all prediction methods, with significant (p < 0.05) results except for OVH predicting liver V<15Gy (p = 0.063).

Conclusions

In addition to evaluating plan quality, KBP is useful to automatically determine the patient eligibility for liver SBRT and quantify the dosimetric gains from non-coplanar 4π plans. The two here analyzed dose prediction methods performed more accurately for the 4π plans than VMAT.
Literature
1.
go back to reference Dawood O, Mahadevan A, Goodman KA. Stereotactic body radiation therapy for liver metastases. Eur J Cancer. 2009;45(17):2947–59.CrossRefPubMed Dawood O, Mahadevan A, Goodman KA. Stereotactic body radiation therapy for liver metastases. Eur J Cancer. 2009;45(17):2947–59.CrossRefPubMed
2.
go back to reference Fode MM, Hoyer M. Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother Oncol. 2015;114(2):155–60.CrossRefPubMed Fode MM, Hoyer M. Survival and prognostic factors in 321 patients treated with stereotactic body radiotherapy for oligo-metastases. Radiother Oncol. 2015;114(2):155–60.CrossRefPubMed
3.
go back to reference Huertas A, et al. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol. 2015;115(2):211–6.CrossRefPubMed Huertas A, et al. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol. 2015;115(2):211–6.CrossRefPubMed
4.
go back to reference Rusthoven KE, et al. Multi-Institutional Phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8.CrossRefPubMed Rusthoven KE, et al. Multi-Institutional Phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–8.CrossRefPubMed
5.
go back to reference Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85(5):1159–60.CrossRefPubMedPubMedCentral Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85(5):1159–60.CrossRefPubMedPubMedCentral
6.
go back to reference Dong P, et al. 4pi Non-Coplanar Liver SBRT: A novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85(5):1360–6.CrossRefPubMed Dong P, et al. 4pi Non-Coplanar Liver SBRT: A novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85(5):1360–6.CrossRefPubMed
7.
go back to reference Woods K, et al. Viability of Non-Coplanar VMAT for Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4pi IMRT. Adv Radiat Oncol. 2016;1(1):67–75.CrossRefPubMedPubMedCentral Woods K, et al. Viability of Non-Coplanar VMAT for Liver SBRT as Compared to Coplanar VMAT and Beam Orientation Optimized 4pi IMRT. Adv Radiat Oncol. 2016;1(1):67–75.CrossRefPubMedPubMedCentral
8.
go back to reference Schefter TE, et al. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62(5):1371–8.CrossRefPubMed Schefter TE, et al. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62(5):1371–8.CrossRefPubMed
9.
go back to reference Velec M, et al. Predictors of Liver Toxicity Following Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2017;97(5):939–46. Velec M, et al. Predictors of Liver Toxicity Following Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2017;97(5):939–46.
10.
go back to reference Baisden JM, et al. Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis. Int J Radiat Oncol Biol Phys. 2006;66(2):620–5.CrossRefPubMed Baisden JM, et al. Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis. Int J Radiat Oncol Biol Phys. 2006;66(2):620–5.CrossRefPubMed
11.
12.
go back to reference Yuan L, et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys. 2012;39(11):6868–78.CrossRefPubMed Yuan L, et al. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys. 2012;39(11):6868–78.CrossRefPubMed
13.
go back to reference Appenzoller LM, et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39(12):7446–61.CrossRefPubMed Appenzoller LM, et al. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39(12):7446–61.CrossRefPubMed
14.
go back to reference Lian J, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study. Med Phys. 2013;40(12):121704.CrossRefPubMedPubMedCentral Lian J, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an intertechnique and interinstitutional study. Med Phys. 2013;40(12):121704.CrossRefPubMedPubMedCentral
15.
go back to reference Shiraishi S, et al. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery. Med Phys. 2015;42(2):908.CrossRefPubMed Shiraishi S, et al. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery. Med Phys. 2015;42(2):908.CrossRefPubMed
16.
go back to reference Wu B, et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys. 2009;36(12):5497–505.CrossRefPubMed Wu B, et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys. 2009;36(12):5497–505.CrossRefPubMed
17.
go back to reference Robertson SP, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients. Med Phys. 2015;42(7):4329.CrossRefPubMed Robertson SP, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients. Med Phys. 2015;42(7):4329.CrossRefPubMed
18.
go back to reference Fogliata A, et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol. 2014;9:236.CrossRefPubMedPubMedCentral Fogliata A, et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol. 2014;9:236.CrossRefPubMedPubMedCentral
19.
go back to reference Yu VY, Tran A, Nguyen D, Cao M, Ruan D, Low DA, Sheng K. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Medical Physics. 2015;42(11):6457–67.CrossRefPubMedPubMedCentral Yu VY, Tran A, Nguyen D, Cao M, Ruan D, Low DA, Sheng K. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery. Medical Physics. 2015;42(11):6457–67.CrossRefPubMedPubMedCentral
20.
go back to reference Romeijn HE, Ahuja RK, Dempsey JF, Kumar A. A Column Generation Approach to Radiation Therapy Treatment Planning Using Aperture Modulation. SIAM Journal on Optimization. 2005;15(3):838–62.CrossRef Romeijn HE, Ahuja RK, Dempsey JF, Kumar A. A Column Generation Approach to Radiation Therapy Treatment Planning Using Aperture Modulation. SIAM Journal on Optimization. 2005;15(3):838–62.CrossRef
21.
go back to reference Nguyen D, Thomas D, Cao M, O’Connor D, Lamb J, Sheng K. Computerized triplet beam orientation optimization for MRI-guided Co-60 radiotherapy. Medical Physics. 2016;43(10):5667–75.CrossRefPubMed Nguyen D, Thomas D, Cao M, O’Connor D, Lamb J, Sheng K. Computerized triplet beam orientation optimization for MRI-guided Co-60 radiotherapy. Medical Physics. 2016;43(10):5667–75.CrossRefPubMed
22.
go back to reference Wang Y, Zolnay A, Incrocci L, Joosten H, McNutt T, Heijmen B, Petit S. A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer. Radiotherapy and Oncology. 2013;107(3):352–7.CrossRefPubMed Wang Y, Zolnay A, Incrocci L, Joosten H, McNutt T, Heijmen B, Petit S. A quality control model that uses PTV-rectal distances to predict the lowest achievable rectum dose, improves IMRT planning for patients with prostate cancer. Radiotherapy and Oncology. 2013;107(3):352–7.CrossRefPubMed
23.
go back to reference Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Medical Physics. 2012;39(11):6868–78.CrossRefPubMed Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Medical Physics. 2012;39(11):6868–78.CrossRefPubMed
Metadata
Title
Predicting liver SBRT eligibility and plan quality for VMAT and 4π plans
Authors
Angelia Tran
Kaley Woods
Dan Nguyen
Victoria Y. Yu
Tianye Niu
Minsong Cao
Percy Lee
Ke Sheng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0806-z

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue