Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Hypo- or conventionally fractionated radiotherapy combined with chemotherapy in patients with limited stage small cell lung cancer

Authors: Jing Zhang, Min Fan, Di Liu, Kuai-Le Zhao, Kai-Liang Wu, Wei-Xin Zhao, Zheng-Fei Zhu, Xiao-Long Fu

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Previous data from our institution showed that hypofractionated thoracic radiotherapy (HypoTRT) with concurrent etoposide/platinum chemotherapy yielded favorable survival in patients with limited-stage small cell lung cancer (LS-SCLC). The present study retrospectively compared the survival outcomes, failure patterns and toxicities between groups of LS-SCLC patients treated with conventionally fractionated thoracic radiotherapy (ConvTRT) or HypoTRT combined with chemotherapy.

Methods

Medical records of LS-SCLC patients between January 2010 and December 2013 at Fudan University Shanghai Cancer Center were retrospectively reviewed. All patients treated with chemotherapy and ConvTRT (2 Gy per fraction daily, DT ≥ 56 Gy) or HypoTRT (2.5 Gy per fraction daily, DT = 55 Gy) were eligible for analysis. Progression-free survival (PFS) and overall survival (OS) were generated for different populations using the Kaplan-Meier method and compared using the log-rank test. Comparisons of failure patterns and toxicity were analyzed using the χ 2 test.

Results

A total of 170 patients treated with HypoTRT (n = 69) or ConvTRT (n = 101) were eligible for analysis. The median PFS and OS were 13.7 and 25.3 months, respectively, in the ConvTRT cohort, which was similar to the HypoTRT cohort (PFS 18.2 months, p = 0.991, and OS 27.2 months, p = 0.698), with a median follow-up of 30 months. Multivariate analysis revealed that PCI and TNM stage were prognostic factors for PFS and that PCI was prognostic for OS. The patterns of failure (stratified by local-regional recurrence, distant metastasis or both as first relapse) were similar between the dose cohorts (p = 0.693, p = 0.330, p = 0.572). Distant metastasis remained the main failure pattern. The brain was the most frequent remote failure site, followed by bone, liver and adrenal gland. PCI improved the 2-year survival rate from 46.1% to 70.0% and the 2-year PFS rate from 20.9% to 45.3%, respectively (p < 0.001). Grade ≥3 esophagitis and pneumonitis occurred in 9.9% and 11.9%, respectively, of the patients in the ConvTRT cohort and in 11.6% and 10.0%, respectively, of those in the HypoTRT cohort (p = 0.815).

Conclusion

This retrospective analysis demonstrated that HypoTRT or ConvTRT combined with etoposide/platinum chemotherapy yielded statistically similar survival, treatment failure outcomes, and toxicity profiles. PCI correlated with improved PFS and OS.
Literature
2.
go back to reference Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.CrossRefPubMed Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539–44.CrossRefPubMed
3.
go back to reference Jett JR, Schild SE, Kesler KA, et al. Treatment of small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e400S–19S.CrossRefPubMed Jett JR, Schild SE, Kesler KA, et al. Treatment of small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e400S–19S.CrossRefPubMed
4.
go back to reference Warde P, Payne D. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol. 1992;10:890–5.CrossRefPubMed Warde P, Payne D. Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol. 1992;10:890–5.CrossRefPubMed
5.
go back to reference Pignon JP, Arriagada R, Ihde DC, et al. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med. 1992;327:1618–24.CrossRefPubMed Pignon JP, Arriagada R, Ihde DC, et al. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med. 1992;327:1618–24.CrossRefPubMed
6.
go back to reference Salama JK, Hodgson L, Pang H, et al. A pooled analysis of limited-stage small-cell lung cancer patients treated with induction chemotherapy followed by concurrent platinum-based chemotherapy and 70 Gy daily radiotherapy: CALGB 30904. J Thorac Oncol. 2013;8:1043–9.CrossRefPubMed Salama JK, Hodgson L, Pang H, et al. A pooled analysis of limited-stage small-cell lung cancer patients treated with induction chemotherapy followed by concurrent platinum-based chemotherapy and 70 Gy daily radiotherapy: CALGB 30904. J Thorac Oncol. 2013;8:1043–9.CrossRefPubMed
7.
go back to reference Turrisi AR, Kim K, Blum R, et al. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med. 1999;340:265–71.CrossRefPubMed Turrisi AR, Kim K, Blum R, et al. Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med. 1999;340:265–71.CrossRefPubMed
8.
go back to reference Miller AA, Wang XF, Bogart JA, et al. Phase II trial of paclitaxel-topotecan-etoposide followed by consolidation chemoradiotherapy for limited-stage small cell lung cancer: CALGB 30002. J Thorac Oncol. 2007;2:645–51.CrossRefPubMed Miller AA, Wang XF, Bogart JA, et al. Phase II trial of paclitaxel-topotecan-etoposide followed by consolidation chemoradiotherapy for limited-stage small cell lung cancer: CALGB 30002. J Thorac Oncol. 2007;2:645–51.CrossRefPubMed
9.
go back to reference Kelley MJ, Bogart JA, Hodgson LD, et al. Phase II study of induction cisplatin and irinotecan followed by concurrent carboplatin, etoposide, and thoracic radiotherapy for limited-stage small-cell lung cancer, CALGB 30206. J Thorac Oncol. 2013;8:102–8.CrossRefPubMedPubMedCentral Kelley MJ, Bogart JA, Hodgson LD, et al. Phase II study of induction cisplatin and irinotecan followed by concurrent carboplatin, etoposide, and thoracic radiotherapy for limited-stage small-cell lung cancer, CALGB 30206. J Thorac Oncol. 2013;8:102–8.CrossRefPubMedPubMedCentral
10.
go back to reference Choi NC, Herndon JN, Rosenman J, et al. Phase I study to determine the maximum-tolerated dose of radiation in standard daily and hyperfractionated-accelerated twice-daily radiation schedules with concurrent chemotherapy for limited-stage small-cell lung cancer. J Clin Oncol. 1998;16:3528–36.CrossRefPubMed Choi NC, Herndon JN, Rosenman J, et al. Phase I study to determine the maximum-tolerated dose of radiation in standard daily and hyperfractionated-accelerated twice-daily radiation schedules with concurrent chemotherapy for limited-stage small-cell lung cancer. J Clin Oncol. 1998;16:3528–36.CrossRefPubMed
11.
go back to reference Bogart JA, Herndon JN, Lyss AP, et al. 70 Gy thoracic radiotherapy is feasible concurrent with chemotherapy for limited-stage small-cell lung cancer: analysis of Cancer and Leukemia Group B study 39808. Int J Radiat Oncol Biol Phys. 2004;59:460–8.CrossRefPubMed Bogart JA, Herndon JN, Lyss AP, et al. 70 Gy thoracic radiotherapy is feasible concurrent with chemotherapy for limited-stage small-cell lung cancer: analysis of Cancer and Leukemia Group B study 39808. Int J Radiat Oncol Biol Phys. 2004;59:460–8.CrossRefPubMed
12.
go back to reference Faivre-Finn C, Snee M, et al. CONVERT: An international randomised trial of concurrent chemo-radiotherapy (cCTRT) comparing twice-daily (BD) and once-daily (OD) radiotherapy schedules in patients with limited stage small cell lung cancer (LS-SCLC) and good performance status (PS). J Clin Oncol. 2016;34 (suppl; abstr 8504). Faivre-Finn C, Snee M, et al. CONVERT: An international randomised trial of concurrent chemo-radiotherapy (cCTRT) comparing twice-daily (BD) and once-daily (OD) radiotherapy schedules in patients with limited stage small cell lung cancer (LS-SCLC) and good performance status (PS). J Clin Oncol. 2016;34 (suppl; abstr 8504).
13.
go back to reference De Ruysscher D, Vansteenkiste J. Chest radiotherapy in limited-stage small cell lung cancer: facts, questions, prospects. Radiother Oncol. 2000;55:1–9.CrossRefPubMed De Ruysscher D, Vansteenkiste J. Chest radiotherapy in limited-stage small cell lung cancer: facts, questions, prospects. Radiother Oncol. 2000;55:1–9.CrossRefPubMed
14.
go back to reference Murray N, Coy P, Pater JL, et al. Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1993;11:336–44.CrossRefPubMed Murray N, Coy P, Pater JL, et al. Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 1993;11:336–44.CrossRefPubMed
15.
go back to reference Xia B, Hong LZ, Cai XW, et al. Phase 2 study of accelerated hypofractionated thoracic radiation therapy and concurrent chemotherapy in patients with limited-stage small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2015;91:517–23.CrossRefPubMed Xia B, Hong LZ, Cai XW, et al. Phase 2 study of accelerated hypofractionated thoracic radiation therapy and concurrent chemotherapy in patients with limited-stage small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2015;91:517–23.CrossRefPubMed
16.
go back to reference Zelen M. Keynote address on biostatistics and data retrieval. Cancer Chemother Rep 3. 1973;4:31–42.PubMed Zelen M. Keynote address on biostatistics and data retrieval. Cancer Chemother Rep 3. 1973;4:31–42.PubMed
17.
go back to reference Videtic GM, Truong PT, Dar AR, et al. Shifting from hypofractionated to “conventionally” fractionated thoracic radiotherapy: a single institution’s 10-year experience in the management of limited-stage small-cell lung cancer using concurrent chemoradiation. Int J Radiat Oncol Biol Phys. 2003;57:709–16.CrossRefPubMed Videtic GM, Truong PT, Dar AR, et al. Shifting from hypofractionated to “conventionally” fractionated thoracic radiotherapy: a single institution’s 10-year experience in the management of limited-stage small-cell lung cancer using concurrent chemoradiation. Int J Radiat Oncol Biol Phys. 2003;57:709–16.CrossRefPubMed
18.
go back to reference Fried DB, Morris DE, Poole C, et al. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. J Clin Oncol. 2004;22:4837–45.CrossRefPubMed Fried DB, Morris DE, Poole C, et al. Systematic review evaluating the timing of thoracic radiation therapy in combined modality therapy for limited-stage small-cell lung cancer. J Clin Oncol. 2004;22:4837–45.CrossRefPubMed
19.
go back to reference Spiro SG, James LE, Rudd RM, et al. Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London Lung Cancer Group multicenter randomized clinical trial and meta-analysis. J Clin Oncol. 2006;24:3823–30.CrossRefPubMed Spiro SG, James LE, Rudd RM, et al. Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London Lung Cancer Group multicenter randomized clinical trial and meta-analysis. J Clin Oncol. 2006;24:3823–30.CrossRefPubMed
20.
go back to reference Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341:476–84.CrossRefPubMed Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341:476–84.CrossRefPubMed
21.
go back to reference Patel S, Macdonald OK, Suntharalingam M. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. Cancer-Am Cancer Soc. 2009;115:842–50. Patel S, Macdonald OK, Suntharalingam M. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. Cancer-Am Cancer Soc. 2009;115:842–50.
22.
go back to reference Watkins JM, Fortney JA, Wahlquist AE, et al. Once-daily radiotherapy to > or =59.4 Gy versus twice-daily radiotherapy to > or =45.0 Gy with concurrent chemotherapy for limited-stage small-cell lung cancer: a comparative analysis of toxicities and outcomes. Jpn J Radiol. 2010;28:340–8.CrossRefPubMed Watkins JM, Fortney JA, Wahlquist AE, et al. Once-daily radiotherapy to > or =59.4 Gy versus twice-daily radiotherapy to > or =45.0 Gy with concurrent chemotherapy for limited-stage small-cell lung cancer: a comparative analysis of toxicities and outcomes. Jpn J Radiol. 2010;28:340–8.CrossRefPubMed
23.
go back to reference Sun JM, Ahn YC, Choi EK, et al. Phase III trial of concurrent thoracic radiotherapy with either first- or third-cycle chemotherapy for limited-disease small-cell lung cancer. Ann Oncol. 2013;24:2088–92.CrossRefPubMed Sun JM, Ahn YC, Choi EK, et al. Phase III trial of concurrent thoracic radiotherapy with either first- or third-cycle chemotherapy for limited-disease small-cell lung cancer. Ann Oncol. 2013;24:2088–92.CrossRefPubMed
Metadata
Title
Hypo- or conventionally fractionated radiotherapy combined with chemotherapy in patients with limited stage small cell lung cancer
Authors
Jing Zhang
Min Fan
Di Liu
Kuai-Le Zhao
Kai-Liang Wu
Wei-Xin Zhao
Zheng-Fei Zhu
Xiao-Long Fu
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0788-x

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue