Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

The effect of bowel preparation regime on interfraction rectal filling variation during image guided radiotherapy for prostate cancer

Authors: Ali Hosni, Tara Rosewall, Timothy Craig, Vickie Kong, Andrew Bayley, Alejandro Berlin, Robert Bristow, Charles Catton, Padraig Warde, Peter Chung

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

This study aimed to investigate the tolerability and impact of milk of magnesia (MoM) on interfraction rectal filling during prostate cancer radiotherapy.

Methods

Two groups were retrospectively identified, each consisting of 40 patients with prostate cancer treated with radiotherapy to prostate+/-seminal vesicles, with daily image-guidance in 78Gy/39fractions/8 weeks. The first-group followed anti-flatulence diet with MoM started 3-days prior to planning-CT and continued during radiotherapy, while the second-group followed the same anti-flatulence diet only. The rectum between upper and lower limit of the clinical target volume (CTV) was delineated on planning-CT and on weekly cone-beam-CT (CBCT). Rectal filling was assessed by measurement of anterio-posterior diameter of the rectum at the superior and mid levels of CTV, rectal volume (RV), and average cross-sectional rectal area (CSA; RV/length).

Results

Overall 720 images (80 planning-CT and 640 CBCT images) from 80 patients were analyzed. Using linear mixed models, and after adjusting for baseline values at the time of planning-CT to test the differences in rectal dimensions between both groups over the 8-week treatment period, there were no significant differences in RV (p = 0.4), CSA (p = 0.5), anterio-posterior diameter of rectum at superior (p = 0.4) or mid level of CTV (p = 0.4). In the non-MoM group; 22.5% of patients had diarrhea compared to 60% in the MoM group, while 40% discontinued use of MoM by end of radiotherapy.

Conclusion

The addition of MoM to antiflatulence diet did not reduce the interfraction variation in rectal filling but caused diarrhea in a substantial proportion of patients who then discontinued its use.
Literature
1.
go back to reference Zelefsky MJ, Pei X, Chou JF, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60:1133–9.CrossRefPubMed Zelefsky MJ, Pei X, Chou JF, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60:1133–9.CrossRefPubMed
2.
go back to reference Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125–9.CrossRefPubMed Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125–9.CrossRefPubMed
3.
go back to reference Zelefsky MJ, Crean D, Mageras GS, et al. Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol. 1999;50:225–34.CrossRefPubMed Zelefsky MJ, Crean D, Mageras GS, et al. Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol. 1999;50:225–34.CrossRefPubMed
4.
go back to reference Padhani AR, Khoo VS, Suckling J, Husband JE, Leach MO, Dearnaley DP. Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys. 1999;44:525–33.CrossRefPubMed Padhani AR, Khoo VS, Suckling J, Husband JE, Leach MO, Dearnaley DP. Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. Int J Radiat Oncol Biol Phys. 1999;44:525–33.CrossRefPubMed
5.
go back to reference Smeenk RJ, Teh BS, Butler EB, van Lin EN, Kaanders JH. Is there a role for endorectal balloons in prostate radiotherapy? a systematic review. Radiother Oncol. 2010;95:277–82.CrossRefPubMed Smeenk RJ, Teh BS, Butler EB, van Lin EN, Kaanders JH. Is there a role for endorectal balloons in prostate radiotherapy? a systematic review. Radiother Oncol. 2010;95:277–82.CrossRefPubMed
6.
go back to reference McNair HA, Wedlake L, McVey GP, Thomas K, Andreyev J, Dearnaley DP. Can diet combined with treatment scheduling achieve consistency of rectal filling in patients receiving radiotherapy to the prostate? Radiother Oncol. 2011;101:471–8.CrossRefPubMed McNair HA, Wedlake L, McVey GP, Thomas K, Andreyev J, Dearnaley DP. Can diet combined with treatment scheduling achieve consistency of rectal filling in patients receiving radiotherapy to the prostate? Radiother Oncol. 2011;101:471–8.CrossRefPubMed
7.
go back to reference Ki Y, Kim W, Nam J, et al. Probiotics for rectal volume variation during radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2013;87:646–50.CrossRefPubMed Ki Y, Kim W, Nam J, et al. Probiotics for rectal volume variation during radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2013;87:646–50.CrossRefPubMed
8.
go back to reference Villeirs GM, De Meerleer GO, Verstraete KL, De Neve WJ. Magnetic resonance assessment of prostate localization variability in intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60:1611–21.CrossRefPubMed Villeirs GM, De Meerleer GO, Verstraete KL, De Neve WJ. Magnetic resonance assessment of prostate localization variability in intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60:1611–21.CrossRefPubMed
9.
go back to reference Fuji H, Murayama S, Niwakawa M, et al. Changes in rectal volume and prostate localization due to placement of a rectum-emptying tube. Jpn J Radiol. 2009;27:205–12.CrossRefPubMed Fuji H, Murayama S, Niwakawa M, et al. Changes in rectal volume and prostate localization due to placement of a rectum-emptying tube. Jpn J Radiol. 2009;27:205–12.CrossRefPubMed
10.
go back to reference Ogino I, Uemura H, Inoue T, Kubota Y, Nomura K, Okamoto N. Reduction of prostate motion by removal of gas in rectum during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:456–66.CrossRefPubMed Ogino I, Uemura H, Inoue T, Kubota Y, Nomura K, Okamoto N. Reduction of prostate motion by removal of gas in rectum during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72:456–66.CrossRefPubMed
11.
go back to reference Smitsmans MH, Pos FJ, de Bois J, et al. The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys. 2008;71:1279–86.CrossRefPubMed Smitsmans MH, Pos FJ, de Bois J, et al. The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys. 2008;71:1279–86.CrossRefPubMed
12.
go back to reference Nichol AM, Warde PR, Lockwood GA, et al. A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys. 2010;77:1072–8.CrossRefPubMed Nichol AM, Warde PR, Lockwood GA, et al. A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys. 2010;77:1072–8.CrossRefPubMed
13.
go back to reference Lips IM, van Gils CH, Kotte AN, et al. A double-blind placebo-controlled randomized clinical trial with magnesium oxide to reduce intrafraction prostate motion for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:653–60.CrossRefPubMed Lips IM, van Gils CH, Kotte AN, et al. A double-blind placebo-controlled randomized clinical trial with magnesium oxide to reduce intrafraction prostate motion for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2012;83:653–60.CrossRefPubMed
14.
go back to reference den Harder AM, van Gils CH, Kotte AN, van Vulpen M, Lips IM. Effect of magnesium oxide on interfraction prostate motion and rectal filling in prostate cancer radiotherapy: analysis of a randomized clinical trial. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft … [et al]. 2014;190:758-761. den Harder AM, van Gils CH, Kotte AN, van Vulpen M, Lips IM. Effect of magnesium oxide on interfraction prostate motion and rectal filling in prostate cancer radiotherapy: analysis of a randomized clinical trial. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft … [et al]. 2014;190:758-761.
15.
go back to reference Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277:1445–51.CrossRefPubMed Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277:1445–51.CrossRefPubMed
16.
go back to reference Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys. 2007;67:1418–24.CrossRefPubMed Heemsbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys. 2007;67:1418–24.CrossRefPubMed
17.
go back to reference de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:965–73.CrossRefPubMed de Crevoisier R, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:965–73.CrossRefPubMed
18.
go back to reference Litzenberg DW, Balter JM, Hadley SW, et al. Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:548–53.CrossRefPubMed Litzenberg DW, Balter JM, Hadley SW, et al. Influence of intrafraction motion on margins for prostate radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:548–53.CrossRefPubMed
19.
go back to reference Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405–18.CrossRefPubMed Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405–18.CrossRefPubMed
20.
go back to reference Oates RW, Schneider ME, Lim Joon M, et al. A randomised study of a diet intervention to maintain consistent rectal volume for patients receiving radical radiotherapy to the prostate. Acta Oncol. 2014;53:569–71.CrossRefPubMed Oates RW, Schneider ME, Lim Joon M, et al. A randomised study of a diet intervention to maintain consistent rectal volume for patients receiving radical radiotherapy to the prostate. Acta Oncol. 2014;53:569–71.CrossRefPubMed
Metadata
Title
The effect of bowel preparation regime on interfraction rectal filling variation during image guided radiotherapy for prostate cancer
Authors
Ali Hosni
Tara Rosewall
Timothy Craig
Vickie Kong
Andrew Bayley
Alejandro Berlin
Robert Bristow
Charles Catton
Padraig Warde
Peter Chung
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0787-y

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue