Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints

Authors: Lars König, Alexander Derksen, Nils Papenberg, Benjamin Haas

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

Deformable image registration (DIR) is a key component in many radiotherapy applications. However, often resulting deformations are not satisfying, since varying deformation properties of different anatomical regions are not considered. To improve the plausibility of DIR in adaptive radiotherapy in the male pelvic area, this work integrates a local rigidity deformation model into a DIR algorithm.

Methods

A DIR framework is extended by constraints, enforcing locally rigid deformation behavior for arbitrary delineated structures. The approach restricts those structures to rigid deformations, while surrounding tissue is still allowed to deform elastically. The algorithm is tested on ten CT/CBCT male pelvis datasets with active rigidity constraints on bones and prostate and compared to the Varian SmartAdapt deformable registration (VSA) on delineations of bladder, prostate and bones.

Results

The approach with no rigid structures (REG0) obtains an average dice similarity coefficient (DSC) of 0.87 ± 0.06 and a Hausdorff-Distance (HD) of 8.74 ± 5.95 mm. The new approach with rigid bones (REG1) yields a DSC of 0.87 ± 0.07, HD 8.91 ± 5.89 mm. Rigid deformation of bones and prostate (REG2) obtains 0.87 ± 0.06, HD 8.73 ± 6.01 mm, while VSA yields a DSC of 0.86 ± 0.07, HD 10.22 ± 6.62 mm. No deformation grid foldings are observed for REG0 and REG1 in 7 of 10 cases; for REG2 in 8 of 10 cases, with no grid foldings in prostate, an average of 0.08 % in bladder (REG2: no foldings) and 0.01 % inside the body contour. VSA exhibits grid foldings in each case, with an average percentage of 1.81 % for prostate, 1.74 % for bladder and 0.12 % for the body contour. While REG1 and REG2 keep bones rigid, elastic bone deformations are observed with REG0 and VSA. An average runtime of 26.2 s was achieved with REG1; 31.1 s with REG2, compared to 10.5 s with REG0 and 10.7 s with VMS.

Conclusions

With accuracy in the range of VSA, the new approach with constraints delivers physically more plausible deformations in the pelvic area with guaranteed rigidity of arbitrary structures. Although the algorithm uses an advanced deformation model, clinically feasible runtimes are achieved.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jaffray DA, Lindsay PE, Brock KK, Deasy JO, Tomé WA. Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol. 2010; 76(3):135–9.CrossRef Jaffray DA, Lindsay PE, Brock KK, Deasy JO, Tomé WA. Accurate accumulation of dose for improved understanding of radiation effects in normal tissue. Int J Radiat Oncol. 2010; 76(3):135–9.CrossRef
3.
go back to reference Kupelian PA, Langen KM, Willoughby TR, Zeidan OA, Meeks SL. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 2008; 18:58–66.CrossRefPubMed Kupelian PA, Langen KM, Willoughby TR, Zeidan OA, Meeks SL. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 2008; 18:58–66.CrossRefPubMed
4.
go back to reference Muren LP, Smaaland R, Dahl O. Organ motion, set-up variation and treatment margins in radical radiotherapy of urinary bladder cancer. Radiother Oncol. 2003; 69:291–304.CrossRefPubMed Muren LP, Smaaland R, Dahl O. Organ motion, set-up variation and treatment margins in radical radiotherapy of urinary bladder cancer. Radiother Oncol. 2003; 69:291–304.CrossRefPubMed
5.
go back to reference Hensel JM, Ménard C, Chung PW, et al.Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int J Radiat Oncol Biol Phys. 2007; 68:1522–1528.CrossRefPubMed Hensel JM, Ménard C, Chung PW, et al.Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning. Int J Radiat Oncol Biol Phys. 2007; 68:1522–1528.CrossRefPubMed
6.
go back to reference Thörnqvist S, Petersen JB, Høyer M, Bentzen LN, Muren LP. Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration. Acta Oncol. 2010; 49:1023–1032.CrossRefPubMed Thörnqvist S, Petersen JB, Høyer M, Bentzen LN, Muren LP. Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration. Acta Oncol. 2010; 49:1023–1032.CrossRefPubMed
7.
go back to reference Thor M, Petersen JB, Bentzen L, Høyer M, Muren LP. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol. 2011; 50:918–25.CrossRefPubMed Thor M, Petersen JB, Bentzen L, Høyer M, Muren LP. Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol. 2011; 50:918–25.CrossRefPubMed
8.
go back to reference Zhong H, Kim J, Li H, Nurushev T, Movsas B, Chetty IJ. A finite element method to correct deformable image registration errors in low-contrast regions. Phys Med Biol. 2012; 57:3499–515.CrossRefPubMedPubMedCentral Zhong H, Kim J, Li H, Nurushev T, Movsas B, Chetty IJ. A finite element method to correct deformable image registration errors in low-contrast regions. Phys Med Biol. 2012; 57:3499–515.CrossRefPubMedPubMedCentral
9.
go back to reference Nithiananthan S, Schafer S, Uneri A, et al.Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Med Phys. 2011; 38:1785–1798.CrossRefPubMedPubMedCentral Nithiananthan S, Schafer S, Uneri A, et al.Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Med Phys. 2011; 38:1785–1798.CrossRefPubMedPubMedCentral
10.
go back to reference Brock KK, Hawkins M, Eccles C, et al.Improving image-guided target localization through deformable registration. Acta Oncol. 2008; 47:1279–1285.CrossRefPubMed Brock KK, Hawkins M, Eccles C, et al.Improving image-guided target localization through deformable registration. Acta Oncol. 2008; 47:1279–1285.CrossRefPubMed
11.
go back to reference Thor M, Andersen ES, Petersen JB, et al.Evaluation of an application for intensity-based deformable image registration and dose accumulation in radiotherapy. Acta Oncol. 2014; 53:1329–1336.CrossRefPubMed Thor M, Andersen ES, Petersen JB, et al.Evaluation of an application for intensity-based deformable image registration and dose accumulation in radiotherapy. Acta Oncol. 2014; 53:1329–1336.CrossRefPubMed
12.
go back to reference Gu X, Dong B, Wang J, et al.A contour-guided deformable image registration algorithm for adaptive radiotherapy. Phys Med Biol. 2013; 58:1889–1901.CrossRefPubMed Gu X, Dong B, Wang J, et al.A contour-guided deformable image registration algorithm for adaptive radiotherapy. Phys Med Biol. 2013; 58:1889–1901.CrossRefPubMed
13.
go back to reference Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015; 42:40–53.CrossRefPubMed Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015; 42:40–53.CrossRefPubMed
14.
go back to reference Staring M, Klein S, Pluim JPW. A rigidity penalty term for nonrigid registration. Med Phys. 2007; 34:4098–108.CrossRefPubMed Staring M, Klein S, Pluim JPW. A rigidity penalty term for nonrigid registration. Med Phys. 2007; 34:4098–108.CrossRefPubMed
15.
go back to reference Haber E, Heldmann S, Modersitzki J. A framework for image-based constrained registration with an application to local rigidity. Linear Algebra Appl. 2009; 431:459–70.CrossRef Haber E, Heldmann S, Modersitzki J. A framework for image-based constrained registration with an application to local rigidity. Linear Algebra Appl. 2009; 431:459–70.CrossRef
16.
go back to reference Modersitzki J. FLIRT with rigidity – image registration with a local non-rigidity penalty. Int J Comput Vision. 2008; 76:153–63.CrossRef Modersitzki J. FLIRT with rigidity – image registration with a local non-rigidity penalty. Int J Comput Vision. 2008; 76:153–63.CrossRef
17.
go back to reference Reaungamornrat S, Wang A, Uneri A, Otake Y, Khanna A, Siewerdsen J. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery. Phys Med Biol. 2014; 59:3761–787.CrossRefPubMedPubMedCentral Reaungamornrat S, Wang A, Uneri A, Otake Y, Khanna A, Siewerdsen J. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery. Phys Med Biol. 2014; 59:3761–787.CrossRefPubMedPubMedCentral
18.
go back to reference Kim J, Kumar S, Liu C, et al.A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy. Phys Med Biol. 2013; 58:8077–097.CrossRefPubMedPubMedCentral Kim J, Kumar S, Liu C, et al.A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy. Phys Med Biol. 2013; 58:8077–097.CrossRefPubMedPubMedCentral
19.
go back to reference Greene WH, Chelikani S, Purushothaman K, et al.Constrained non-rigid registration for use in image-guided adaptive radiotherapy. Med Image Anal. 2009; 13(5):809–17.CrossRefPubMedPubMedCentral Greene WH, Chelikani S, Purushothaman K, et al.Constrained non-rigid registration for use in image-guided adaptive radiotherapy. Med Image Anal. 2009; 13(5):809–17.CrossRefPubMedPubMedCentral
20.
go back to reference Modersitzki J. FAIR: Flexible Algorithms for Image Registration. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 2009.CrossRef Modersitzki J. FAIR: Flexible Algorithms for Image Registration. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 2009.CrossRef
21.
go back to reference Haber E, Modersitzki J. Intensity gradient based registration and fusion of multi-modal images. Methods Inf Med. 2007; 46:292–9.PubMed Haber E, Modersitzki J. Intensity gradient based registration and fusion of multi-modal images. Methods Inf Med. 2007; 46:292–9.PubMed
22.
go back to reference Cunliffe AR, White B, Justusson J, et al.Comparison of two deformable registration algorithms in the presence of radiologic change between serial lung CT scans. J Digit Imaging. 2015; 28:755–60.CrossRefPubMed Cunliffe AR, White B, Justusson J, et al.Comparison of two deformable registration algorithms in the presence of radiologic change between serial lung CT scans. J Digit Imaging. 2015; 28:755–60.CrossRefPubMed
23.
go back to reference König L, Derksen A, Hallmann M, Papenberg N. Parallel and memory efficient multimodal image registration for radiotherapy using normalized gradient fields. In: Biomedical Imaging (ISBI), IEEE 12th International Symposium On. Piscataway: IEEE: 2015. p. 734–8. König L, Derksen A, Hallmann M, Papenberg N. Parallel and memory efficient multimodal image registration for radiotherapy using normalized gradient fields. In: Biomedical Imaging (ISBI), IEEE 12th International Symposium On. Piscataway: IEEE: 2015. p. 734–8.
24.
go back to reference Rühaak J, Derksen A, Heldmann S, Hallmann M, Meine H. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study. In: SPIE Medical Imaging. Bellingham: SPIE: 2015. p. 371–7. Rühaak J, Derksen A, Heldmann S, Hallmann M, Meine H. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study. In: SPIE Medical Imaging. Bellingham: SPIE: 2015. p. 371–7.
25.
go back to reference König L, Rühaak J. A fast and accurate parallel algorithm for non-linear image registration using normalized gradient fields. In: Biomedical Imaging (ISBI), IEEE 11th International Symposium On. Piscataway: IEEE: 2014. p. 580–3. König L, Rühaak J. A fast and accurate parallel algorithm for non-linear image registration using normalized gradient fields. In: Biomedical Imaging (ISBI), IEEE 11th International Symposium On. Piscataway: IEEE: 2014. p. 580–3.
26.
go back to reference Ramadaan IS, Peick K, Hamilton DA, et al.Validation of Varian’ SmartAdapt®; deformable image registration algorithm for clinical application. Radiat Oncol. 2015; 10:73.CrossRefPubMedPubMedCentral Ramadaan IS, Peick K, Hamilton DA, et al.Validation of Varian’ SmartAdapt®; deformable image registration algorithm for clinical application. Radiat Oncol. 2015; 10:73.CrossRefPubMedPubMedCentral
27.
go back to reference Nocedal J, Wright SJ. Numerical optimization, 2nd edn. New York: Springer; 1999, pp. 176–80.CrossRef Nocedal J, Wright SJ. Numerical optimization, 2nd edn. New York: Springer; 1999, pp. 176–80.CrossRef
28.
go back to reference Fischer B, Modersitzki J. Curvature based image registration. J Math Imaging Vis. 2003; 18:81–5.CrossRef Fischer B, Modersitzki J. Curvature based image registration. J Math Imaging Vis. 2003; 18:81–5.CrossRef
29.
go back to reference Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26:297–302.CrossRef Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26:297–302.CrossRef
30.
go back to reference Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the hausdorff distance. IEEE T Pattern Anal. 1993; 15:850–63.CrossRef Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the hausdorff distance. IEEE T Pattern Anal. 1993; 15:850–63.CrossRef
31.
go back to reference Varadhan R, Karangelis G, Krishnan K, Hui S. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013; 14:4066.PubMedPubMedCentral Varadhan R, Karangelis G, Krishnan K, Hui S. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013; 14:4066.PubMedPubMedCentral
32.
go back to reference Karacali B, Davatzikos C. Estimating topology preserving and smooth displacement fields. IEEE Trans Med Imaging. 2004; 23:868–80.CrossRefPubMed Karacali B, Davatzikos C. Estimating topology preserving and smooth displacement fields. IEEE Trans Med Imaging. 2004; 23:868–80.CrossRefPubMed
33.
go back to reference Haber E, Modersitzki J. Numerical methods for volume preserving image registration. Inverse probl. 2004; 20:1621–1638.CrossRef Haber E, Modersitzki J. Numerical methods for volume preserving image registration. Inverse probl. 2004; 20:1621–1638.CrossRef
34.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18:712–21.CrossRefPubMed Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999; 18:712–21.CrossRefPubMed
35.
go back to reference Rühaak J, Heldmann S, Kipshagen T, Fischer B. Highly accurate fast lung CT registration. In: SPIE Medical Imaging. Bellingham: SPIE: 2013. p. 86690. Rühaak J, Heldmann S, Kipshagen T, Fischer B. Highly accurate fast lung CT registration. In: SPIE Medical Imaging. Bellingham: SPIE: 2013. p. 86690.
36.
go back to reference Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011; 98:154–61.CrossRefPubMed Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011; 98:154–61.CrossRefPubMed
Metadata
Title
Deformable image registration for adaptive radiotherapy with guaranteed local rigidity constraints
Authors
Lars König
Alexander Derksen
Nils Papenberg
Benjamin Haas
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0697-4

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue