Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Design and evaluation of electron beam energy degraders for breast boost irradiation

Authors: Jong In Park, Sung Whan Ha, Jung-in Kim, Hyunseok Lee, Jaegi Lee, Il Han Kim, Sung-Joon Ye

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

For breast cancer patients who require electron boost energies between 6 and 9 MeV, an energy degraders (ED) in the 9 MeV beamline was specially designed and manufactured to increase the skin dose of 6 MeV and to reduce the penetration depth of 9 MeV beams.

Methods

We used Monte Carlo (MC) techniques as a guide in the design of ED for use with linear accelerators. In order to satisfy percent depth dose (PDD) characteristics and dose profile uniformity in water, the shape and thickness of Lucite® ED in the 9 MeV beamline was iteratively optimized and then manufactured. The ED geometry consists of a truncated cone attached on top of a plane plate, with total central thickness of 1.0 cm. The ED was placed on the lower most scraper of the electron applicator. The PDDs, profiles, and output factors were measured in water to validate the MC-based design.

Results

Skin doses with the EDs increased by 8–9 %, compared to those of the 9 MeV beam. The outputs with the EDs were 0.882 and 0.972 for 10 × 10 and 15 × 15 cm2 cones, respectively, as compared to that of a conventional 9 MeV beam for a 10 × 10 cm2 cone. The X-ray contamination remained less than 1.5 %. In-vivo measurements were also performed for three breast boost patients and showed close agreement with expected values.

Conclusions

The optimally designed ED in the 9 MeV beamline provides breast conserving patients with a new energy option of 7 MeV for boost of the shallow tumor bed. It would be an alternative to bolus and thus eliminate inconvenience and concern about the daily variation of bolus setup.
Literature
1.
2.
go back to reference Khan FM. The physics of radiation therapy. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2009. Khan FM. The physics of radiation therapy. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2009.
3.
go back to reference Alasti H, Galbraith DM. Depth dose flattening of electron beams using a wire mesh bolus. Med Phys. 1995;22:1675–83.CrossRefPubMed Alasti H, Galbraith DM. Depth dose flattening of electron beams using a wire mesh bolus. Med Phys. 1995;22:1675–83.CrossRefPubMed
4.
go back to reference Cederbaum M, Ravkin A, Rosenblatt E, Gez E. Implementing a tantalum wire mesh to increase the skin dose in low-energy electron irradiation of the chest wall. Med Dosim. 2001;26:275–9.CrossRefPubMed Cederbaum M, Ravkin A, Rosenblatt E, Gez E. Implementing a tantalum wire mesh to increase the skin dose in low-energy electron irradiation of the chest wall. Med Dosim. 2001;26:275–9.CrossRefPubMed
5.
go back to reference Lambert GD, Richmond ND, Kermode RH, Porter DJT. The use of high density metal foils to increase surface dose in low-energy clinical electron beams. Radiother Oncol. 1999;53:161–6.CrossRefPubMed Lambert GD, Richmond ND, Kermode RH, Porter DJT. The use of high density metal foils to increase surface dose in low-energy clinical electron beams. Radiother Oncol. 1999;53:161–6.CrossRefPubMed
6.
go back to reference Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR. Electron bolus design for radiotherapy treatment planning - bolus design algorithms. Med Phys. 1992;19:115–24.CrossRefPubMed Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR. Electron bolus design for radiotherapy treatment planning - bolus design algorithms. Med Phys. 1992;19:115–24.CrossRefPubMed
7.
go back to reference Low DA, Starkschall G, Sherman NE, Bujnowski SW, Ewton JR, Hogstrom KR. Computer-aided design and fabrication of an electron bolus for treatment of the paraspinal muscles. Int J Radiat Oncol Biol Phys. 1995;33:1127–38.CrossRefPubMed Low DA, Starkschall G, Sherman NE, Bujnowski SW, Ewton JR, Hogstrom KR. Computer-aided design and fabrication of an electron bolus for treatment of the paraspinal muscles. Int J Radiat Oncol Biol Phys. 1995;33:1127–38.CrossRefPubMed
8.
go back to reference Deng J, Lee MC, Ma CM. A Monte Carlo investigation of fluence profiles collimated by an electron specific MLC during beam delivery for modulated electron radiation therapy. Med Phys. 2002;29:2472–83.CrossRefPubMed Deng J, Lee MC, Ma CM. A Monte Carlo investigation of fluence profiles collimated by an electron specific MLC during beam delivery for modulated electron radiation therapy. Med Phys. 2002;29:2472–83.CrossRefPubMed
9.
go back to reference Gauer T, Albers D, Cremers F, Harmansa R, Pellegrini R, Schmidt R. Design of a computer-controlled multileaf collimator for advanced electron radiotherapy. Phys Med Biol. 2006;51:5987–6003.CrossRefPubMed Gauer T, Albers D, Cremers F, Harmansa R, Pellegrini R, Schmidt R. Design of a computer-controlled multileaf collimator for advanced electron radiotherapy. Phys Med Biol. 2006;51:5987–6003.CrossRefPubMed
10.
go back to reference Gauer T, Sokoll J, Cremers F, Harmansa R, Luzzara M, Schmidt R. Characterization of an add-on multileaf collimator for electron beam therapy. Phys Med Biol. 2008;53:1071–85.CrossRefPubMed Gauer T, Sokoll J, Cremers F, Harmansa R, Luzzara M, Schmidt R. Characterization of an add-on multileaf collimator for electron beam therapy. Phys Med Biol. 2008;53:1071–85.CrossRefPubMed
11.
go back to reference Hogstrom KR, Boyd RA, Antolak JA, Svatos MM, Faddegon BA, Rosenman JG. Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy. Med Phys. 2004;31:443–62.CrossRefPubMed Hogstrom KR, Boyd RA, Antolak JA, Svatos MM, Faddegon BA, Rosenman JG. Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy. Med Phys. 2004;31:443–62.CrossRefPubMed
12.
go back to reference Lee MC, Jiang SB, Ma CM. Monte Carlo and experimental investigations of multileaf collimated electron beams for modulated electron radiation therapy. Med Phys. 2000;27:2708–18.CrossRefPubMed Lee MC, Jiang SB, Ma CM. Monte Carlo and experimental investigations of multileaf collimated electron beams for modulated electron radiation therapy. Med Phys. 2000;27:2708–18.CrossRefPubMed
13.
go back to reference Ma CM, Pawlicki T, Lee MC, Jiang SB, Li JS, Deng J, et al. Energy- and intensity-modulated electron beams for radiotherapy. Phys Med Biol. 2000;45:2293–311.CrossRefPubMed Ma CM, Pawlicki T, Lee MC, Jiang SB, Li JS, Deng J, et al. Energy- and intensity-modulated electron beams for radiotherapy. Phys Med Biol. 2000;45:2293–311.CrossRefPubMed
14.
go back to reference Ravindran BP, Singh IR, Brindha S, Sathyan S. Manual multi-leaf collimator for electron beam shaping--a feasibility study. Phys Med Biol. 2002;47:4389–96.CrossRefPubMed Ravindran BP, Singh IR, Brindha S, Sathyan S. Manual multi-leaf collimator for electron beam shaping--a feasibility study. Phys Med Biol. 2002;47:4389–96.CrossRefPubMed
15.
go back to reference Vatanen T, Traneus E, Lahtinen T. Dosimetric verification of a Monte Carlo electron beam model for an add-on eMLC. Phys Med Biol. 2008;53:391–404.CrossRefPubMed Vatanen T, Traneus E, Lahtinen T. Dosimetric verification of a Monte Carlo electron beam model for an add-on eMLC. Phys Med Biol. 2008;53:391–404.CrossRefPubMed
16.
go back to reference Vatanen T, Traneus E, Lahtinen T. Enhancement of electron-beam surface dose with an electron multi-leaf collimator (eMLC): a feasibility study. Phys Med Biol. 2009;54:2407–19.CrossRefPubMed Vatanen T, Traneus E, Lahtinen T. Enhancement of electron-beam surface dose with an electron multi-leaf collimator (eMLC): a feasibility study. Phys Med Biol. 2009;54:2407–19.CrossRefPubMed
17.
go back to reference du Plessis FCP, Leal A, Stathakis S, Xiong W, Ma CM. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC). Phys Med Biol. 2006;51:2113–29.CrossRefPubMed du Plessis FCP, Leal A, Stathakis S, Xiong W, Ma CM. Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC). Phys Med Biol. 2006;51:2113–29.CrossRefPubMed
18.
go back to reference Al-Yahya K, Verhaegen F, Seuntjens J. Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy. Med Phys. 2007;34:4782–91.CrossRefPubMed Al-Yahya K, Verhaegen F, Seuntjens J. Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy. Med Phys. 2007;34:4782–91.CrossRefPubMed
19.
go back to reference Das IJ, Kase KR, Copeland JF, Fitzgerald TJ. Electron beam modifications for the treatment of superficial malignancies. Int J Radiat Oncol Biol Phys. 1991;21:1627–34.CrossRefPubMed Das IJ, Kase KR, Copeland JF, Fitzgerald TJ. Electron beam modifications for the treatment of superficial malignancies. Int J Radiat Oncol Biol Phys. 1991;21:1627–34.CrossRefPubMed
20.
go back to reference Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503–24.CrossRefPubMed Rogers DW, Faddegon BA, Ding GX, Ma CM, We J, Mackie TR. BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys. 1995;22:503–24.CrossRefPubMed
21.
go back to reference Walters B, Kawrakow I, Rogers D: DOSXYZnrc users manual. NRC Report PIRS. 2005;794 Walters B, Kawrakow I, Rogers D: DOSXYZnrc users manual. NRC Report PIRS. 2005;794
22.
go back to reference Antolak JA, Bieda MR, Hogstrom KR. Using Monte Carlo methods to commission electron beams: a feasibility study. Med Phys. 2002;29:771–86.CrossRefPubMed Antolak JA, Bieda MR, Hogstrom KR. Using Monte Carlo methods to commission electron beams: a feasibility study. Med Phys. 2002;29:771–86.CrossRefPubMed
23.
go back to reference Bieda MR, Antolak JA, Hogstrom KR. The effect of scattering foil parameters on electron-beam Monte Carlo calculations. Med Phys. 2001;28:2527–34.CrossRefPubMed Bieda MR, Antolak JA, Hogstrom KR. The effect of scattering foil parameters on electron-beam Monte Carlo calculations. Med Phys. 2001;28:2527–34.CrossRefPubMed
24.
go back to reference Kapur A, Ma CM, Mok EC, Findley DO, Boyer AL. Monte Carlo calculations of electron beam output factors for a medical linear accelerator. Phys Med Biol. 1998;43:3479–94.CrossRefPubMed Kapur A, Ma CM, Mok EC, Findley DO, Boyer AL. Monte Carlo calculations of electron beam output factors for a medical linear accelerator. Phys Med Biol. 1998;43:3479–94.CrossRefPubMed
25.
go back to reference Ma CM, Jiang SB. Monte Carlo modelling of electron beams from medical accelerators. Phys Med Biol. 1999;44:R157–89.CrossRefPubMed Ma CM, Jiang SB. Monte Carlo modelling of electron beams from medical accelerators. Phys Med Biol. 1999;44:R157–89.CrossRefPubMed
26.
go back to reference Sheikh-Bagheri D, Rogers DW. Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys. 2002;29:379–90.CrossRefPubMed Sheikh-Bagheri D, Rogers DW. Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters. Med Phys. 2002;29:379–90.CrossRefPubMed
27.
go back to reference Verhaegen F, Mubata C, Pettingell J, Bidmead AM, Rosenberg I, Mockridge D, et al. Monte Carlo calculation of output factors for circular, rectangular, and square fields of electron accelerators (6–20 MeV). Med Phys. 2001;28:938–49.CrossRefPubMed Verhaegen F, Mubata C, Pettingell J, Bidmead AM, Rosenberg I, Mockridge D, et al. Monte Carlo calculation of output factors for circular, rectangular, and square fields of electron accelerators (6–20 MeV). Med Phys. 2001;28:938–49.CrossRefPubMed
28.
go back to reference Ye SJ, Pareek PN, Spencer S, Duan J, Brezovich IA. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations. Med Phys. 2005;32:1460–8.CrossRefPubMed Ye SJ, Pareek PN, Spencer S, Duan J, Brezovich IA. Monte Carlo techniques for scattering foil design and dosimetry in total skin electron irradiations. Med Phys. 2005;32:1460–8.CrossRefPubMed
29.
go back to reference Park JM, Kim JI, Heon Choi C, Chie EK, Kim IH, Ye SJ. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study. Med Phys. 2012;39:1265–77.CrossRefPubMed Park JM, Kim JI, Heon Choi C, Chie EK, Kim IH, Ye SJ. Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study. Med Phys. 2012;39:1265–77.CrossRefPubMed
30.
go back to reference O'Shea TP, Sawkey DL, Foley MJ, Faddegon BA. Monte Carlo commissioning of clinical electron beams using large field measurements. Phys Med Biol. 2010;55:4083–105.CrossRefPubMed O'Shea TP, Sawkey DL, Foley MJ, Faddegon BA. Monte Carlo commissioning of clinical electron beams using large field measurements. Phys Med Biol. 2010;55:4083–105.CrossRefPubMed
31.
go back to reference Ding GX, Rogers DWO. Energy spectra, angular spread and dose distribution of electron beam from various accelerators used in radiotherapy. National Research Council of Canada Report PIRS-0439. Ottawa: NRC; 1995. Ding GX, Rogers DWO. Energy spectra, angular spread and dose distribution of electron beam from various accelerators used in radiotherapy. National Research Council of Canada Report PIRS-0439. Ottawa: NRC; 1995.
32.
go back to reference Zhang S, Liengsawangwong P, Lindsay P, Prado K, Sun TL, Steadham R, et al. Clinical implementation of electron energy changes of varian linear accelerators. J Appl Clin Med Phys. 2009;10:177–87.CrossRef Zhang S, Liengsawangwong P, Lindsay P, Prado K, Sun TL, Steadham R, et al. Clinical implementation of electron energy changes of varian linear accelerators. J Appl Clin Med Phys. 2009;10:177–87.CrossRef
33.
go back to reference ICRU. Radiation dosimetry: electron beams with energies between 1 and 50 MeV. ICRU Report. Bethesda: ICRU; 1984. p. 35. ICRU. Radiation dosimetry: electron beams with energies between 1 and 50 MeV. ICRU Report. Bethesda: ICRU; 1984. p. 35.
34.
go back to reference Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847–70.CrossRefPubMed Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26:1847–70.CrossRefPubMed
35.
go back to reference Khan FM, Doppke KP, Hogstrom KR, Kutcher GJ, Nath R, Prasad SC, et al. Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys. 1991;18:73–109.CrossRefPubMed Khan FM, Doppke KP, Hogstrom KR, Kutcher GJ, Nath R, Prasad SC, et al. Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys. 1991;18:73–109.CrossRefPubMed
36.
go back to reference Zhang GG, Rogers DWO, Cygler JE, Mackie TR. Monte Carlo investigation of electron beam output factors versus size of square cutout. Med Phys. 1999;26:743–50.CrossRefPubMed Zhang GG, Rogers DWO, Cygler JE, Mackie TR. Monte Carlo investigation of electron beam output factors versus size of square cutout. Med Phys. 1999;26:743–50.CrossRefPubMed
37.
go back to reference Chow JC, Grigorov GN. Electron radiotherapy: a study on dosimetric uncertainty using small cutouts. Phys Med Biol. 2007;52:N1–11.CrossRefPubMed Chow JC, Grigorov GN. Electron radiotherapy: a study on dosimetric uncertainty using small cutouts. Phys Med Biol. 2007;52:N1–11.CrossRefPubMed
38.
go back to reference Chen JZ, VanDyk J, Lewis C, Battista JJ. A two-source model for electron beams: calculation of relative output factors. Med Phys. 2001;28:1735–45.CrossRefPubMed Chen JZ, VanDyk J, Lewis C, Battista JJ. A two-source model for electron beams: calculation of relative output factors. Med Phys. 2001;28:1735–45.CrossRefPubMed
39.
go back to reference Park SY, Ahn BS, Park JM, Ye SJ, Kim IH, Kim JI. Dosimetric comparison of 4 MeV and 6 MeV electron beams for total skin irradiation. Radiat Oncol. 2014;9:197.CrossRefPubMedPubMedCentral Park SY, Ahn BS, Park JM, Ye SJ, Kim IH, Kim JI. Dosimetric comparison of 4 MeV and 6 MeV electron beams for total skin irradiation. Radiat Oncol. 2014;9:197.CrossRefPubMedPubMedCentral
40.
go back to reference Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, et al. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys. 2014;41:031501.CrossRefPubMed Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, et al. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys. 2014;41:031501.CrossRefPubMed
41.
go back to reference Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34:4594–604.CrossRefPubMed Jursinic PA. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med Phys. 2007;34:4594–604.CrossRefPubMed
42.
go back to reference Mills MD, Fajardo LC, Wilson DL, Jodi LD, William JS. Commissioning of a mobile electron accelerator for intraoperative radiotherapy. J Appl Clin Med Phys. 2001;2:121–30.CrossRefPubMed Mills MD, Fajardo LC, Wilson DL, Jodi LD, William JS. Commissioning of a mobile electron accelerator for intraoperative radiotherapy. J Appl Clin Med Phys. 2001;2:121–30.CrossRefPubMed
43.
go back to reference Eldib A, Jin L, Li J, Charlie Ma CM. Investigation of the clinical potential of scattering foil free electron beams. Phys Med Biol. 2014;59:819–36.CrossRefPubMed Eldib A, Jin L, Li J, Charlie Ma CM. Investigation of the clinical potential of scattering foil free electron beams. Phys Med Biol. 2014;59:819–36.CrossRefPubMed
44.
go back to reference Connell T, Alexander A, Evans M, Seuntjens J. An experimental feasibility study on the use of scattering foil free beams for modulated electron radiotherapy. Phys Med Biol. 2012;57:3259–72.CrossRefPubMed Connell T, Alexander A, Evans M, Seuntjens J. An experimental feasibility study on the use of scattering foil free beams for modulated electron radiotherapy. Phys Med Biol. 2012;57:3259–72.CrossRefPubMed
Metadata
Title
Design and evaluation of electron beam energy degraders for breast boost irradiation
Authors
Jong In Park
Sung Whan Ha
Jung-in Kim
Hyunseok Lee
Jaegi Lee
Il Han Kim
Sung-Joon Ye
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0686-7

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue