Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Applying a RapidPlan model trained on a technique and orientation to another: a feasibility and dosimetric evaluation

Authors: Hao Wu, Fan Jiang, Haizhen Yue, Hui Zhang, Kun Wang, Yibao Zhang

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

The development of a dose-volume-histogram (DVH) estimation model for knowledge-based planning is very time-consuming and it could be inefficient if it was only used for similar upcoming cases as supposed. It is clinically desirable to explore and validate other potential applications for a configured model. This study tests the hypothesis that a supine volumetric modulated arc therapy (VMAT) model can optimize intensity modulated radiotherapy (IMRT) plans of other patient setup orientations.

Methods

Based on RapidPlan, a DVH estimation model was trained using 81 supine VMAT rectal plans and validated on 10 similar cases to ensure the robustness of its designed purpose. Attempts were then made to apply the model to re-optimize the dynamic MLC-sequences of the duplicated IMRT plans from 30 historical patients (20 prone and 10 supine) that were treated with the same prescription as for the model (50.6 and 41.8 Gy to 95 % of PGTV and PTV simultaneously/22 fractions). The performance of knowledge-based re-optimization and the impact of setup orientations were evaluated dosimetrically.

Results

The VMAT model validation on similar cases showed comparable target dose distribution and significantly improved organ sparing (by 10.77 ~ 18.65 %) than the original plans. IMRT plans of either setup can be re-optimized using the supine VMAT model, which significantly reduced the dose to the bladder (by 25.88 % from 33.85 ± 2.96 to 25.09 ± 1.32 Gy for D50 %; by 22.77 % from 33.99 ± 2.77 to 26.25 ± 1.22 Gy for mean dose) and femoral head (by 12.27 % from 15.65 ± 3.33 to 13.73 ± 1.43 Gy for D50 %; by 10.09 % from 16.26 ± 2.74 to 14.62 ± 1.10 Gy for mean dose), all P < 0.01. Although the dose homogeneity and PGTV conformity index (CI_PGTV) changed slightly (≤0.01), CI_PTV of IMRT plans was significantly increased (Δ = 0.17, P < 0.01) by the manually defined target-objectives in the VMAT optimizer. The semi-automated IMRT planning increased the global maximum dose and V107 % due to the missing of hot spot suppression by specific manual optimizing or fluence map editing.

Conclusions

The Varian RapidPlan model trained on a technique and orientation can be used for another. Knowledge-based planning improves organ sparing and quality consistency, yet the target-objectives defined for VMAT-optimizer should be readapted to IMRT planning, followed by manual hot spot processing.
Literature
2.
go back to reference Zarepisheh M, Long T, Li N, et al. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Med Phys. 2014;41:061711.CrossRefPubMed Zarepisheh M, Long T, Li N, et al. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Med Phys. 2014;41:061711.CrossRefPubMed
3.
go back to reference Moore K, Scott Brame R, Low D, Mutic S. Experience based quality control of clinical intensity modulated radiotherapy planning. Int J Radiat Oncol Biol Phys. 2011;81:545–51.CrossRefPubMed Moore K, Scott Brame R, Low D, Mutic S. Experience based quality control of clinical intensity modulated radiotherapy planning. Int J Radiat Oncol Biol Phys. 2011;81:545–51.CrossRefPubMed
4.
go back to reference Appenzoller L, Michalski J, Thorstad W, Mutic S, Moore K. Predicting dosevolume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39:7446–61.CrossRefPubMed Appenzoller L, Michalski J, Thorstad W, Mutic S, Moore K. Predicting dosevolume histograms for organs-at-risk in IMRT planning. Med Phys. 2012;39:7446–61.CrossRefPubMed
5.
go back to reference Chanyavanich V, Das SK, Lee WR, et al. Knowledge-based IMRT treatment planning for prostate cancer. Med Phys. 2011;38:2515.CrossRefPubMed Chanyavanich V, Das SK, Lee WR, et al. Knowledge-based IMRT treatment planning for prostate cancer. Med Phys. 2011;38:2515.CrossRefPubMed
6.
go back to reference Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys. 2011;38:719.CrossRefPubMed Zhu X, Ge Y, Li T, et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys. 2011;38:719.CrossRefPubMed
7.
go back to reference Wu B, McNutt T, Zahurak M, et al. Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2012;84:e647–53.CrossRefPubMed Wu B, McNutt T, Zahurak M, et al. Fully automated simultaneous integrated boosted-intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2012;84:e647–53.CrossRefPubMed
8.
go back to reference Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an inter technique and inter institutional study. Med Phys. 2013;40:121704.CrossRefPubMedPubMedCentral Lian J, Yuan L, Ge Y, et al. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: an inter technique and inter institutional study. Med Phys. 2013;40:121704.CrossRefPubMedPubMedCentral
9.
go back to reference Wu B, Pang D, Simari P, et al. Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and neck case study. Med Phys. 2013;40:021714.CrossRefPubMed Wu B, Pang D, Simari P, et al. Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and neck case study. Med Phys. 2013;40:021714.CrossRefPubMed
10.
go back to reference Yang Y, Ford EC, Wu B, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection. Med Phys. 2013;40:011709.CrossRefPubMed Yang Y, Ford EC, Wu B, et al. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection. Med Phys. 2013;40:011709.CrossRefPubMed
11.
go back to reference Good D, Lo J, Lee WR, et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys. 2013;87:176–81.CrossRefPubMed Good D, Lo J, Lee WR, et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys. 2013;87:176–81.CrossRefPubMed
12.
go back to reference Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine: Application to volumetric modulated arc therapy for patients with lung or prostate cancer. Radiothera Oncol. 2014;113:385–91.CrossRef Fogliata A, Belosi F, Clivio A, et al. On the pre-clinical validation of a commercial model-based optimisation engine: Application to volumetric modulated arc therapy for patients with lung or prostate cancer. Radiothera Oncol. 2014;113:385–91.CrossRef
13.
go back to reference Nwankwo O, Mekdash H, Sihono DSK, et al. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning. Radiat Oncol. 2015;10:111.CrossRefPubMedPubMedCentral Nwankwo O, Mekdash H, Sihono DSK, et al. Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning. Radiat Oncol. 2015;10:111.CrossRefPubMedPubMedCentral
14.
go back to reference Fogliata A, Nicolini G, Clivio A, et al. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers[J]. Radiat Oncol. 2015;10(1):1.CrossRef Fogliata A, Nicolini G, Clivio A, et al. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers[J]. Radiat Oncol. 2015;10(1):1.CrossRef
15.
go back to reference Fogliata A, Nicolini G, Bourgier C, et al. Performance of a knowledge-based model for optimization of volumetric modulated arc therapy plans for single and bilateral breast irradiation[J]. PLoS One. 2015;10(12), e0145137.CrossRefPubMedPubMedCentral Fogliata A, Nicolini G, Bourgier C, et al. Performance of a knowledge-based model for optimization of volumetric modulated arc therapy plans for single and bilateral breast irradiation[J]. PLoS One. 2015;10(12), e0145137.CrossRefPubMedPubMedCentral
16.
go back to reference Tol JP, Delaney AR, Dahele M, et al. Evaluation of a knowledge-based planning solution for head and neck cancer. Int J Radiat Oncol Biol Phys. 2015;91:612–20.CrossRefPubMed Tol JP, Delaney AR, Dahele M, et al. Evaluation of a knowledge-based planning solution for head and neck cancer. Int J Radiat Oncol Biol Phys. 2015;91:612–20.CrossRefPubMed
17.
go back to reference Fogliata A, Wang PM, Belosi F, et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol. 2014;9:236.CrossRefPubMedPubMedCentral Fogliata A, Wang PM, Belosi F, et al. Assessment of a model based optimization engine for volumetric modulated arc therapy for patients with advanced hepatocellular cancer. Radiat Oncol. 2014;9:236.CrossRefPubMedPubMedCentral
18.
go back to reference Varian. Treatment planning 13.5 new features | RapidPlan. EC13.5-WBK-01-B. Palo Alto; 2014. Varian. Treatment planning 13.5 new features | RapidPlan. EC13.5-WBK-01-B. Palo Alto; 2014.
19.
go back to reference ICRU. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:31. Oxford University Press. ICRU. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU. 2010;10:31. Oxford University Press.
20.
go back to reference Moore KL, Schmidt R, Moiseenko V, et al. Quantifying unnecessary normal tissue complication risks due to suboptimal planning: A secondary study of RTOG 0126. Int J Radiat Oncol Biol Phys. 2015;92:228–35.CrossRefPubMedPubMedCentral Moore KL, Schmidt R, Moiseenko V, et al. Quantifying unnecessary normal tissue complication risks due to suboptimal planning: A secondary study of RTOG 0126. Int J Radiat Oncol Biol Phys. 2015;92:228–35.CrossRefPubMedPubMedCentral
21.
go back to reference Cook JT, Tobler M, Leavitt DD, et al. IMRT fluence map editing to control hot and cold spots. Med Dosim. 2006;30:201–4.CrossRef Cook JT, Tobler M, Leavitt DD, et al. IMRT fluence map editing to control hot and cold spots. Med Dosim. 2006;30:201–4.CrossRef
Metadata
Title
Applying a RapidPlan model trained on a technique and orientation to another: a feasibility and dosimetric evaluation
Authors
Hao Wu
Fan Jiang
Haizhen Yue
Hui Zhang
Kun Wang
Yibao Zhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0684-9

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue